Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308554644> ?p ?o ?g. }
- W4308554644 endingPage "1018" @default.
- W4308554644 startingPage "1000" @default.
- W4308554644 abstract "To investigate the static magnetic field generated by a proton pencil beam as a candidate for range verification by means of Monte Carlo simulations, thereby improving upon existing analytical calculations. We focus on the impact of statistical current fluctuations and secondary protons and electrons.We considered a pulsed beam (10 μ${umu}$ s pulse duration) during the duty cycle with a peak beam current of 0.2 μ$umu$ A and an initial energy of 100 MeV. We ran Geant4-DNA Monte Carlo simulations of a proton pencil beam in water and extracted independent particle phase spaces. We calculated longitudinal and radial current density of protons and electrons, serving as an input for a magnetic field estimation based on a finite element analysis in a cylindrical geometry. We made sure to allow for non-solenoidal current densities as is the case of a stopping proton beam.The rising proton charge density toward the range is not perturbed by energy straggling and only lowered through nuclear reactions by up to 15%, leading to an approximately constant longitudinal current. Their relative low density however (at most 0.37 protons/mm3 for the 0.2 μ${umu}$ A current and a beam cross-section of 2.5 mm), gives rise to considerable current density fluctuations. The radial proton current resulting from lateral scattering and being two orders of magnitude weaker than the longitudinal current is subject to even stronger fluctuations. Secondary electrons with energies above 10 eV, that far outnumber the primary protons, reduce the primary proton current by only 10% due to their largely isotropic flow. A small fraction of electrons (<1%), undergoing head-on collisions, constitutes the relevant electron current. In the far-field, both contributions to the magnetic field strength (longitudinal and lateral) are independent of the beam spot size. We also find that the nuclear reaction-related losses cause a shift of 1.3 mm to the magnetic field profile relative to the actual range, which is further enlarged to 2.4 mm by the electron current (at a distance of ρ=50$rho =50$ mm away from the central beam axis). For ρ>45$rho >45$ mm, the shift increases linearly. While the current density variations cause significant magnetic field uncertainty close to the central beam axis with a relative standard deviation (RSD) close to 100%, they average out at a distance of 10 cm, where the RSD of the total magnetic field drops below 2%.With the small influence of the secondary electrons together with the low RSD, our analysis encourages an experimental detection of the magnetic field through sensitive instrumentation, such as optical magnetometry or SQUIDs." @default.
- W4308554644 created "2022-11-12" @default.
- W4308554644 creator A5000377815 @default.
- W4308554644 creator A5000570208 @default.
- W4308554644 creator A5003264655 @default.
- W4308554644 creator A5009782102 @default.
- W4308554644 creator A5017395766 @default.
- W4308554644 creator A5027317353 @default.
- W4308554644 creator A5050349217 @default.
- W4308554644 creator A5065914652 @default.
- W4308554644 creator A5083196840 @default.
- W4308554644 date "2023-01-02" @default.
- W4308554644 modified "2023-09-26" @default.
- W4308554644 title "Impact of secondary particles on the magnetic field generated by a proton pencil beam: a finite‐element analysis based on Geant4‐DNA simulations" @default.
- W4308554644 cites W1964318214 @default.
- W4308554644 cites W1973251399 @default.
- W4308554644 cites W1990869665 @default.
- W4308554644 cites W1992628502 @default.
- W4308554644 cites W1998185578 @default.
- W4308554644 cites W1999189079 @default.
- W4308554644 cites W2006142492 @default.
- W4308554644 cites W2014945759 @default.
- W4308554644 cites W2021819143 @default.
- W4308554644 cites W2022366918 @default.
- W4308554644 cites W2026812997 @default.
- W4308554644 cites W2062911876 @default.
- W4308554644 cites W2077747692 @default.
- W4308554644 cites W2084333685 @default.
- W4308554644 cites W2113751765 @default.
- W4308554644 cites W2128158076 @default.
- W4308554644 cites W2128881154 @default.
- W4308554644 cites W2129633297 @default.
- W4308554644 cites W2189227215 @default.
- W4308554644 cites W2202964544 @default.
- W4308554644 cites W2253425693 @default.
- W4308554644 cites W2318551388 @default.
- W4308554644 cites W2340629575 @default.
- W4308554644 cites W2401617370 @default.
- W4308554644 cites W2402483609 @default.
- W4308554644 cites W2739105628 @default.
- W4308554644 cites W2744561640 @default.
- W4308554644 cites W2808069317 @default.
- W4308554644 cites W2853748070 @default.
- W4308554644 cites W2896199006 @default.
- W4308554644 cites W2949327983 @default.
- W4308554644 cites W2949769332 @default.
- W4308554644 cites W2991670061 @default.
- W4308554644 cites W3002269531 @default.
- W4308554644 cites W3030601496 @default.
- W4308554644 cites W3081025997 @default.
- W4308554644 cites W3087214627 @default.
- W4308554644 cites W3115449808 @default.
- W4308554644 cites W3135112010 @default.
- W4308554644 cites W3190170883 @default.
- W4308554644 cites W3195626095 @default.
- W4308554644 doi "https://doi.org/10.1002/mp.16062" @default.
- W4308554644 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36346042" @default.
- W4308554644 hasPublicationYear "2023" @default.
- W4308554644 type Work @default.
- W4308554644 citedByCount "0" @default.
- W4308554644 crossrefType "journal-article" @default.
- W4308554644 hasAuthorship W4308554644A5000377815 @default.
- W4308554644 hasAuthorship W4308554644A5000570208 @default.
- W4308554644 hasAuthorship W4308554644A5003264655 @default.
- W4308554644 hasAuthorship W4308554644A5009782102 @default.
- W4308554644 hasAuthorship W4308554644A5017395766 @default.
- W4308554644 hasAuthorship W4308554644A5027317353 @default.
- W4308554644 hasAuthorship W4308554644A5050349217 @default.
- W4308554644 hasAuthorship W4308554644A5065914652 @default.
- W4308554644 hasAuthorship W4308554644A5083196840 @default.
- W4308554644 hasBestOaLocation W43085546441 @default.
- W4308554644 hasConcept C105795698 @default.
- W4308554644 hasConcept C115260700 @default.
- W4308554644 hasConcept C120665830 @default.
- W4308554644 hasConcept C121332964 @default.
- W4308554644 hasConcept C134949993 @default.
- W4308554644 hasConcept C147120987 @default.
- W4308554644 hasConcept C168834538 @default.
- W4308554644 hasConcept C184779094 @default.
- W4308554644 hasConcept C185544564 @default.
- W4308554644 hasConcept C19499675 @default.
- W4308554644 hasConcept C207740977 @default.
- W4308554644 hasConcept C2779244869 @default.
- W4308554644 hasConcept C30475298 @default.
- W4308554644 hasConcept C33923547 @default.
- W4308554644 hasConcept C34667332 @default.
- W4308554644 hasConcept C54516573 @default.
- W4308554644 hasConcept C62520636 @default.
- W4308554644 hasConceptScore W4308554644C105795698 @default.
- W4308554644 hasConceptScore W4308554644C115260700 @default.
- W4308554644 hasConceptScore W4308554644C120665830 @default.
- W4308554644 hasConceptScore W4308554644C121332964 @default.
- W4308554644 hasConceptScore W4308554644C134949993 @default.
- W4308554644 hasConceptScore W4308554644C147120987 @default.
- W4308554644 hasConceptScore W4308554644C168834538 @default.
- W4308554644 hasConceptScore W4308554644C184779094 @default.
- W4308554644 hasConceptScore W4308554644C185544564 @default.
- W4308554644 hasConceptScore W4308554644C19499675 @default.