Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308555638> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4308555638 endingPage "934" @default.
- W4308555638 startingPage "922" @default.
- W4308555638 abstract "Patient scans from MRI often suffer from noise, which hampers the diagnostic capability of such images. As a method to mitigate such artifacts, denoising is largely studied both within the medical imaging community and beyond the community as a general subject. However, recent deep neural network-based approaches mostly rely on the minimum mean squared error (MMSE) estimates, which tend to produce a blurred output. Moreover, such models suffer when deployed in real-world situations: out-of-distribution data, and complex noise distributions that deviate from the usual parametric noise models. In this work, we propose a new denoising method based on score-based reverse diffusion sampling, which overcomes all the aforementioned drawbacks. Our network, trained only with coronal knee scans, excels even on out-of-distribution in vivo liver MRI data, contaminated with a complex mixture of noise. Even more, we propose a method to enhance the resolution of the denoised image with the same network. With extensive experiments, we show that our method establishes state-of-the-art performance while having desirable properties which prior MMSE denoisers did not have: flexibly choosing the extent of denoising, and quantifying uncertainty." @default.
- W4308555638 created "2022-11-12" @default.
- W4308555638 creator A5006604581 @default.
- W4308555638 creator A5012644755 @default.
- W4308555638 creator A5086748922 @default.
- W4308555638 date "2023-04-01" @default.
- W4308555638 modified "2023-10-18" @default.
- W4308555638 title "MR Image Denoising and Super-Resolution Using Regularized Reverse Diffusion" @default.
- W4308555638 cites W1561664565 @default.
- W4308555638 cites W1971159979 @default.
- W4308555638 cites W1991111872 @default.
- W4308555638 cites W2003884262 @default.
- W4308555638 cites W2013035813 @default.
- W4308555638 cites W2023005931 @default.
- W4308555638 cites W2056370875 @default.
- W4308555638 cites W2059784307 @default.
- W4308555638 cites W2062515778 @default.
- W4308555638 cites W2073660032 @default.
- W4308555638 cites W2093549617 @default.
- W4308555638 cites W2097073572 @default.
- W4308555638 cites W2099244020 @default.
- W4308555638 cites W2137954509 @default.
- W4308555638 cites W2139951616 @default.
- W4308555638 cites W2162266621 @default.
- W4308555638 cites W2219841864 @default.
- W4308555638 cites W2339758283 @default.
- W4308555638 cites W2508457857 @default.
- W4308555638 cites W2508982726 @default.
- W4308555638 cites W2768814045 @default.
- W4308555638 cites W2794846365 @default.
- W4308555638 cites W2902857081 @default.
- W4308555638 cites W2963470893 @default.
- W4308555638 cites W2999817760 @default.
- W4308555638 cites W3018782200 @default.
- W4308555638 cites W3095034359 @default.
- W4308555638 cites W3165032792 @default.
- W4308555638 cites W3178192988 @default.
- W4308555638 cites W3191805365 @default.
- W4308555638 cites W3205399766 @default.
- W4308555638 cites W3206439203 @default.
- W4308555638 cites W3207092584 @default.
- W4308555638 cites W3207918547 @default.
- W4308555638 cites W4229650096 @default.
- W4308555638 cites W4312293341 @default.
- W4308555638 doi "https://doi.org/10.1109/tmi.2022.3220681" @default.
- W4308555638 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36342993" @default.
- W4308555638 hasPublicationYear "2023" @default.
- W4308555638 type Work @default.
- W4308555638 citedByCount "9" @default.
- W4308555638 countsByYear W43085556382023 @default.
- W4308555638 crossrefType "journal-article" @default.
- W4308555638 hasAuthorship W4308555638A5006604581 @default.
- W4308555638 hasAuthorship W4308555638A5012644755 @default.
- W4308555638 hasAuthorship W4308555638A5086748922 @default.
- W4308555638 hasBestOaLocation W43085556382 @default.
- W4308555638 hasConcept C115961682 @default.
- W4308555638 hasConcept C153180895 @default.
- W4308555638 hasConcept C154945302 @default.
- W4308555638 hasConcept C163294075 @default.
- W4308555638 hasConcept C29265498 @default.
- W4308555638 hasConcept C31601959 @default.
- W4308555638 hasConcept C31972630 @default.
- W4308555638 hasConcept C41008148 @default.
- W4308555638 hasConcept C99498987 @default.
- W4308555638 hasConceptScore W4308555638C115961682 @default.
- W4308555638 hasConceptScore W4308555638C153180895 @default.
- W4308555638 hasConceptScore W4308555638C154945302 @default.
- W4308555638 hasConceptScore W4308555638C163294075 @default.
- W4308555638 hasConceptScore W4308555638C29265498 @default.
- W4308555638 hasConceptScore W4308555638C31601959 @default.
- W4308555638 hasConceptScore W4308555638C31972630 @default.
- W4308555638 hasConceptScore W4308555638C41008148 @default.
- W4308555638 hasConceptScore W4308555638C99498987 @default.
- W4308555638 hasFunder F4320322120 @default.
- W4308555638 hasIssue "4" @default.
- W4308555638 hasLocation W43085556381 @default.
- W4308555638 hasLocation W43085556382 @default.
- W4308555638 hasLocation W43085556383 @default.
- W4308555638 hasOpenAccess W4308555638 @default.
- W4308555638 hasPrimaryLocation W43085556381 @default.
- W4308555638 hasRelatedWork W2005185696 @default.
- W4308555638 hasRelatedWork W2092957489 @default.
- W4308555638 hasRelatedWork W2130228941 @default.
- W4308555638 hasRelatedWork W2132132164 @default.
- W4308555638 hasRelatedWork W2161229648 @default.
- W4308555638 hasRelatedWork W2235753890 @default.
- W4308555638 hasRelatedWork W2366116130 @default.
- W4308555638 hasRelatedWork W2483420468 @default.
- W4308555638 hasRelatedWork W2889893736 @default.
- W4308555638 hasRelatedWork W2993674027 @default.
- W4308555638 hasVolume "42" @default.
- W4308555638 isParatext "false" @default.
- W4308555638 isRetracted "false" @default.
- W4308555638 workType "article" @default.