Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308559097> ?p ?o ?g. }
- W4308559097 endingPage "106017" @default.
- W4308559097 startingPage "106017" @default.
- W4308559097 abstract "Adsorbed gas makes a great contribution to shale gas reserves. During the geological evolution process, it is of prominent significance to clarify the dynamic evolution mechanism of methane adsorption capacity (MAC) of shale to enhance exploration. Variations of the pore structure and surface properties of shales lead to their different MAC. However, the pore structure characteristics and the evolution mechanism of different maceral and mineral components is different. The co-evolution modes and influence mechanism on the MAC of shale remains poorly understood. Therefore, in order to investigate the influential relationship between pore structure evolution and MAC of shales, methane adsorption experiments were conducted on a series of shale samples with the same composition at different thermal maturities. In addition, the original components of the shale sample were analyzed by measuring total organic carbon (TOC) content and mineral composition. Pore structures of the four shale samples were characterized by N2 adsorption, high-pressure mercury intrusion porosimetry (HPMIP), and digital analyses of field-emission scanning electron microscopy (FE-SEM). The results showed a good correlation between the APpore (apparent porosity of pore) of organic pores with the size ranging from 10 to 30 nm and MAC (R2 = 0.943), confirming the prominent influence of organic pores on the MAC of shale. In addition, the APpore of pores within 10–30 nm and aspect ratio of secondary organic matter with spongy pores are highly correlated with MAC (R2 are 0.833 and 0.811, respectively), which suggests that secondary organic matter with spongy pores have a crucial influence on MAC. Clay mineral pores with a pore size of 10–30 nm also effect the MAC of shale. A large number of clay mineral microfractures, with a scale of less than 200 nm, appear to effectively connect organic pores, providing a viable mechanism for hydrocarbon migration and enhancing the MAC of shale. Siliceous mineral dissolution pores and microfractures are not conducive to hydrocarbon migration due to their inability to form effective connections with organic pores and fractures and showing a weak correlation with MAC. The outcome of this study elucidates the main controlling mechanism affecting methane adsorption behavior of continental shale reservoirs and provides a path for the efficient exploration and evaluation of shale gas under actual geological conditions." @default.
- W4308559097 created "2022-11-12" @default.
- W4308559097 creator A5047328875 @default.
- W4308559097 creator A5070012760 @default.
- W4308559097 creator A5079918705 @default.
- W4308559097 creator A5083502815 @default.
- W4308559097 date "2023-01-01" @default.
- W4308559097 modified "2023-09-26" @default.
- W4308559097 title "Differential effects of pore structure of mineral and maceral components on the methane adsorption capacity evolution of the lower jurassic Da'anzhai member of the Ziliujing Formation lacustrine shale, Sichuan Basin, China" @default.
- W4308559097 cites W1973858460 @default.
- W4308559097 cites W1978535220 @default.
- W4308559097 cites W1980083955 @default.
- W4308559097 cites W1980704616 @default.
- W4308559097 cites W1987211948 @default.
- W4308559097 cites W2011254969 @default.
- W4308559097 cites W2012926605 @default.
- W4308559097 cites W2022647667 @default.
- W4308559097 cites W2043519592 @default.
- W4308559097 cites W2048715636 @default.
- W4308559097 cites W2067655208 @default.
- W4308559097 cites W2101398588 @default.
- W4308559097 cites W2113463282 @default.
- W4308559097 cites W2136619032 @default.
- W4308559097 cites W2204769636 @default.
- W4308559097 cites W2312199777 @default.
- W4308559097 cites W2554996062 @default.
- W4308559097 cites W2567544120 @default.
- W4308559097 cites W2581920579 @default.
- W4308559097 cites W2594731212 @default.
- W4308559097 cites W2728844739 @default.
- W4308559097 cites W2735852170 @default.
- W4308559097 cites W2758480260 @default.
- W4308559097 cites W2766367065 @default.
- W4308559097 cites W2796151766 @default.
- W4308559097 cites W2907697800 @default.
- W4308559097 cites W2955933994 @default.
- W4308559097 cites W3036668374 @default.
- W4308559097 cites W3045552770 @default.
- W4308559097 cites W3088153031 @default.
- W4308559097 cites W3091030966 @default.
- W4308559097 cites W3098066805 @default.
- W4308559097 cites W3115945794 @default.
- W4308559097 cites W3127697295 @default.
- W4308559097 cites W3130420781 @default.
- W4308559097 cites W3174232797 @default.
- W4308559097 cites W3194823636 @default.
- W4308559097 cites W3194843091 @default.
- W4308559097 cites W3198171010 @default.
- W4308559097 cites W3202057485 @default.
- W4308559097 cites W3210660521 @default.
- W4308559097 cites W3211418203 @default.
- W4308559097 cites W4200475173 @default.
- W4308559097 cites W4221073140 @default.
- W4308559097 cites W4280613579 @default.
- W4308559097 cites W4281773337 @default.
- W4308559097 cites W4283770980 @default.
- W4308559097 cites W4293066974 @default.
- W4308559097 doi "https://doi.org/10.1016/j.marpetgeo.2022.106017" @default.
- W4308559097 hasPublicationYear "2023" @default.
- W4308559097 type Work @default.
- W4308559097 citedByCount "1" @default.
- W4308559097 countsByYear W43085590972023 @default.
- W4308559097 crossrefType "journal-article" @default.
- W4308559097 hasAuthorship W4308559097A5047328875 @default.
- W4308559097 hasAuthorship W4308559097A5070012760 @default.
- W4308559097 hasAuthorship W4308559097A5079918705 @default.
- W4308559097 hasAuthorship W4308559097A5083502815 @default.
- W4308559097 hasConcept C105569014 @default.
- W4308559097 hasConcept C107872376 @default.
- W4308559097 hasConcept C109007969 @default.
- W4308559097 hasConcept C114873805 @default.
- W4308559097 hasConcept C126559015 @default.
- W4308559097 hasConcept C127313418 @default.
- W4308559097 hasConcept C127413603 @default.
- W4308559097 hasConcept C150394285 @default.
- W4308559097 hasConcept C151730666 @default.
- W4308559097 hasConcept C153127940 @default.
- W4308559097 hasConcept C158787203 @default.
- W4308559097 hasConcept C178790620 @default.
- W4308559097 hasConcept C185592680 @default.
- W4308559097 hasConcept C187320778 @default.
- W4308559097 hasConcept C199289684 @default.
- W4308559097 hasConcept C2779196632 @default.
- W4308559097 hasConcept C30370900 @default.
- W4308559097 hasConcept C40212044 @default.
- W4308559097 hasConcept C42360764 @default.
- W4308559097 hasConcept C48743137 @default.
- W4308559097 hasConcept C516920438 @default.
- W4308559097 hasConcept C59235061 @default.
- W4308559097 hasConcept C6648577 @default.
- W4308559097 hasConceptScore W4308559097C105569014 @default.
- W4308559097 hasConceptScore W4308559097C107872376 @default.
- W4308559097 hasConceptScore W4308559097C109007969 @default.
- W4308559097 hasConceptScore W4308559097C114873805 @default.
- W4308559097 hasConceptScore W4308559097C126559015 @default.
- W4308559097 hasConceptScore W4308559097C127313418 @default.
- W4308559097 hasConceptScore W4308559097C127413603 @default.
- W4308559097 hasConceptScore W4308559097C150394285 @default.