Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308562711> ?p ?o ?g. }
- W4308562711 abstract "To improve the computing speed and energy efficiency of deep neural network (DNN) applications, in‐memory computing with nonvolatile memory (NVM) is proposed to address the time‐consuming and energy‐hungry data shuttling issue. Herein, a digital in‐memory computing method for convolution computing, which holds the key to DNNs, is proposed. Based on the proposed method, a floating gate transistor‐based in‐memory computing chip for accurate convolution computing with high parallelism is created. The proposed digital in‐memory computing method can achieve the central processing unit (CPU)‐equivalent precision with the same neural network architecture and parameters, different from the analogue or digital–analogue‐mixed in‐memory computing techniques. Based on the fabricated floating gate transistor‐based in‐memory computing chip, a hardware LeNet‐5 neural network is built. The chip achieves 96.25% accuracy on the full Modified National Institute of Standards and Technology database, which is the same as the result computed by the CPU with the same neural network architecture and parameters." @default.
- W4308562711 created "2022-11-12" @default.
- W4308562711 creator A5000083222 @default.
- W4308562711 creator A5004349988 @default.
- W4308562711 creator A5010857702 @default.
- W4308562711 creator A5011969636 @default.
- W4308562711 creator A5025596795 @default.
- W4308562711 creator A5032503551 @default.
- W4308562711 creator A5080382470 @default.
- W4308562711 creator A5080407824 @default.
- W4308562711 creator A5089349472 @default.
- W4308562711 creator A5089747900 @default.
- W4308562711 date "2022-11-08" @default.
- W4308562711 modified "2023-10-09" @default.
- W4308562711 title "Floating Gate Transistor‐Based Accurate Digital In‐Memory Computing for Deep Neural Networks" @default.
- W4308562711 cites W1542981317 @default.
- W4308562711 cites W1937359183 @default.
- W4308562711 cites W1969911580 @default.
- W4308562711 cites W2032959979 @default.
- W4308562711 cites W2040687898 @default.
- W4308562711 cites W2110395205 @default.
- W4308562711 cites W2112796928 @default.
- W4308562711 cites W2152107533 @default.
- W4308562711 cites W2160815625 @default.
- W4308562711 cites W2254450385 @default.
- W4308562711 cites W2257979135 @default.
- W4308562711 cites W2289252105 @default.
- W4308562711 cites W2297862270 @default.
- W4308562711 cites W2404427863 @default.
- W4308562711 cites W2404581299 @default.
- W4308562711 cites W2540279855 @default.
- W4308562711 cites W2586637063 @default.
- W4308562711 cites W2609852068 @default.
- W4308562711 cites W2765081478 @default.
- W4308562711 cites W2766447205 @default.
- W4308562711 cites W2775771159 @default.
- W4308562711 cites W2782791387 @default.
- W4308562711 cites W2792208628 @default.
- W4308562711 cites W2796625795 @default.
- W4308562711 cites W2805362231 @default.
- W4308562711 cites W2911345530 @default.
- W4308562711 cites W2919115771 @default.
- W4308562711 cites W2922168646 @default.
- W4308562711 cites W2981703592 @default.
- W4308562711 cites W3003821665 @default.
- W4308562711 cites W3047109430 @default.
- W4308562711 cites W3196469360 @default.
- W4308562711 cites W4205937980 @default.
- W4308562711 cites W4214757564 @default.
- W4308562711 cites W4254436426 @default.
- W4308562711 cites W4281653065 @default.
- W4308562711 cites W4312368778 @default.
- W4308562711 doi "https://doi.org/10.1002/aisy.202200127" @default.
- W4308562711 hasPublicationYear "2022" @default.
- W4308562711 type Work @default.
- W4308562711 citedByCount "0" @default.
- W4308562711 crossrefType "journal-article" @default.
- W4308562711 hasAuthorship W4308562711A5000083222 @default.
- W4308562711 hasAuthorship W4308562711A5004349988 @default.
- W4308562711 hasAuthorship W4308562711A5010857702 @default.
- W4308562711 hasAuthorship W4308562711A5011969636 @default.
- W4308562711 hasAuthorship W4308562711A5025596795 @default.
- W4308562711 hasAuthorship W4308562711A5032503551 @default.
- W4308562711 hasAuthorship W4308562711A5080382470 @default.
- W4308562711 hasAuthorship W4308562711A5080407824 @default.
- W4308562711 hasAuthorship W4308562711A5089349472 @default.
- W4308562711 hasAuthorship W4308562711A5089747900 @default.
- W4308562711 hasConcept C113775141 @default.
- W4308562711 hasConcept C118524514 @default.
- W4308562711 hasConcept C119599485 @default.
- W4308562711 hasConcept C123593499 @default.
- W4308562711 hasConcept C127413603 @default.
- W4308562711 hasConcept C149635348 @default.
- W4308562711 hasConcept C154945302 @default.
- W4308562711 hasConcept C164120249 @default.
- W4308562711 hasConcept C165801399 @default.
- W4308562711 hasConcept C172385210 @default.
- W4308562711 hasConcept C173608175 @default.
- W4308562711 hasConcept C194222762 @default.
- W4308562711 hasConcept C23123220 @default.
- W4308562711 hasConcept C26517878 @default.
- W4308562711 hasConcept C38652104 @default.
- W4308562711 hasConcept C41008148 @default.
- W4308562711 hasConcept C49154492 @default.
- W4308562711 hasConcept C50644808 @default.
- W4308562711 hasConcept C9390403 @default.
- W4308562711 hasConcept C97854310 @default.
- W4308562711 hasConcept C98986596 @default.
- W4308562711 hasConceptScore W4308562711C113775141 @default.
- W4308562711 hasConceptScore W4308562711C118524514 @default.
- W4308562711 hasConceptScore W4308562711C119599485 @default.
- W4308562711 hasConceptScore W4308562711C123593499 @default.
- W4308562711 hasConceptScore W4308562711C127413603 @default.
- W4308562711 hasConceptScore W4308562711C149635348 @default.
- W4308562711 hasConceptScore W4308562711C154945302 @default.
- W4308562711 hasConceptScore W4308562711C164120249 @default.
- W4308562711 hasConceptScore W4308562711C165801399 @default.
- W4308562711 hasConceptScore W4308562711C172385210 @default.
- W4308562711 hasConceptScore W4308562711C173608175 @default.
- W4308562711 hasConceptScore W4308562711C194222762 @default.