Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308562712> ?p ?o ?g. }
- W4308562712 endingPage "100409" @default.
- W4308562712 startingPage "100409" @default.
- W4308562712 abstract "Enterprises are constantly transforming to adapt to an ever-changing and competitive environment. In this context, assessments allow to understand the state of different organisational aspects before performing transformation activities. One of these aspects is the capability of business processes. Evaluating the quality of business processes is relevant to guide improvement initiatives, considering that the way that processes are designed and executed in organisations has direct impact on the quality of products and services. However, assessments are expensive in terms of resources if they are performed by humans. In this sense, recent trends in Artificial Intelligence provide means to improve process capability assessment through the automation of some of its tasks. Following this line, this work presents a method to perform process capability assessment using raw text as input data with the aid of a smart system, able to reduce the need of human intervention to provide reliable assessment results. For this purpose, we introduce a hybrid approach to perform assessments in enterprises using text data as assessment evidence. The method combines the Long Short-Term Memory Network (LSTM) approach and the use of an Ontology named Process Capability Assessment Ontology (PCAO), which also contains a set of rules to calculate process attribute ratings, capability levels, among other aspects. The approach is grounded on the Smart Assessment Framework, a conceptual model devised to guide the development of intelligent assessments in enterprises. We introduce a demonstration of the assessment of a process based on the management of chemical samples from a research institute." @default.
- W4308562712 created "2022-11-12" @default.
- W4308562712 creator A5002821979 @default.
- W4308562712 creator A5014449374 @default.
- W4308562712 creator A5035323311 @default.
- W4308562712 creator A5090451199 @default.
- W4308562712 date "2022-11-01" @default.
- W4308562712 modified "2023-10-09" @default.
- W4308562712 title "A hybrid deep learning and ontology-driven approach to perform business process capability assessment" @default.
- W4308562712 cites W1995088068 @default.
- W4308562712 cites W2010897789 @default.
- W4308562712 cites W2028372401 @default.
- W4308562712 cites W2029950995 @default.
- W4308562712 cites W2038620963 @default.
- W4308562712 cites W2050449632 @default.
- W4308562712 cites W2064675550 @default.
- W4308562712 cites W2073275508 @default.
- W4308562712 cites W2078423632 @default.
- W4308562712 cites W2094608307 @default.
- W4308562712 cites W2112796928 @default.
- W4308562712 cites W2122538988 @default.
- W4308562712 cites W2133678900 @default.
- W4308562712 cites W2138980717 @default.
- W4308562712 cites W2154829072 @default.
- W4308562712 cites W2158997610 @default.
- W4308562712 cites W2165612380 @default.
- W4308562712 cites W2168120333 @default.
- W4308562712 cites W2211336454 @default.
- W4308562712 cites W2213612645 @default.
- W4308562712 cites W2232951740 @default.
- W4308562712 cites W2251803266 @default.
- W4308562712 cites W2261812172 @default.
- W4308562712 cites W2483962956 @default.
- W4308562712 cites W2493916176 @default.
- W4308562712 cites W2507126430 @default.
- W4308562712 cites W2528661529 @default.
- W4308562712 cites W2536129848 @default.
- W4308562712 cites W2741494279 @default.
- W4308562712 cites W2800639362 @default.
- W4308562712 cites W2802718378 @default.
- W4308562712 cites W2910486600 @default.
- W4308562712 cites W2913177900 @default.
- W4308562712 cites W2919115771 @default.
- W4308562712 cites W2981845811 @default.
- W4308562712 cites W3004442222 @default.
- W4308562712 cites W3015225186 @default.
- W4308562712 cites W3151685851 @default.
- W4308562712 cites W4293690910 @default.
- W4308562712 cites W2020972145 @default.
- W4308562712 doi "https://doi.org/10.1016/j.jii.2022.100409" @default.
- W4308562712 hasPublicationYear "2022" @default.
- W4308562712 type Work @default.
- W4308562712 citedByCount "0" @default.
- W4308562712 crossrefType "journal-article" @default.
- W4308562712 hasAuthorship W4308562712A5002821979 @default.
- W4308562712 hasAuthorship W4308562712A5014449374 @default.
- W4308562712 hasAuthorship W4308562712A5035323311 @default.
- W4308562712 hasAuthorship W4308562712A5090451199 @default.
- W4308562712 hasConcept C111472728 @default.
- W4308562712 hasConcept C111919701 @default.
- W4308562712 hasConcept C115901376 @default.
- W4308562712 hasConcept C127413603 @default.
- W4308562712 hasConcept C138885662 @default.
- W4308562712 hasConcept C151730666 @default.
- W4308562712 hasConcept C174998907 @default.
- W4308562712 hasConcept C195094911 @default.
- W4308562712 hasConcept C21547014 @default.
- W4308562712 hasConcept C25810664 @default.
- W4308562712 hasConcept C2779343474 @default.
- W4308562712 hasConcept C2779530757 @default.
- W4308562712 hasConcept C41008148 @default.
- W4308562712 hasConcept C56739046 @default.
- W4308562712 hasConcept C78519656 @default.
- W4308562712 hasConcept C85345410 @default.
- W4308562712 hasConcept C86803240 @default.
- W4308562712 hasConcept C98045186 @default.
- W4308562712 hasConceptScore W4308562712C111472728 @default.
- W4308562712 hasConceptScore W4308562712C111919701 @default.
- W4308562712 hasConceptScore W4308562712C115901376 @default.
- W4308562712 hasConceptScore W4308562712C127413603 @default.
- W4308562712 hasConceptScore W4308562712C138885662 @default.
- W4308562712 hasConceptScore W4308562712C151730666 @default.
- W4308562712 hasConceptScore W4308562712C174998907 @default.
- W4308562712 hasConceptScore W4308562712C195094911 @default.
- W4308562712 hasConceptScore W4308562712C21547014 @default.
- W4308562712 hasConceptScore W4308562712C25810664 @default.
- W4308562712 hasConceptScore W4308562712C2779343474 @default.
- W4308562712 hasConceptScore W4308562712C2779530757 @default.
- W4308562712 hasConceptScore W4308562712C41008148 @default.
- W4308562712 hasConceptScore W4308562712C56739046 @default.
- W4308562712 hasConceptScore W4308562712C78519656 @default.
- W4308562712 hasConceptScore W4308562712C85345410 @default.
- W4308562712 hasConceptScore W4308562712C86803240 @default.
- W4308562712 hasConceptScore W4308562712C98045186 @default.
- W4308562712 hasLocation W43085627121 @default.
- W4308562712 hasLocation W43085627122 @default.
- W4308562712 hasOpenAccess W4308562712 @default.
- W4308562712 hasPrimaryLocation W43085627121 @default.