Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308572023> ?p ?o ?g. }
- W4308572023 endingPage "823" @default.
- W4308572023 startingPage "805" @default.
- W4308572023 abstract "This article introduces a Laplace approximation to Bayesian inference in Dirichlet regression models, which can be used to analyze a set of variables on a simplex exhibiting skewness and heteroscedasticity, without having to transform the data. These data, which mainly consist of proportions or percentages of disjoint categories, are widely known as compositional data and are common in areas such as ecology, geology, and psychology. We provide both the theoretical foundations and a description of how Laplace approximation can be implemented in the case of Dirichlet regression. The article also introduces the package dirinla in the R-language that extends the R-INLA package, which can not deal directly with Dirichlet likelihoods. Simulation studies are presented to validate the good behavior of the proposed method, while a real data case-study is used to show how this approach can be applied. Supplementary materials for this article are available online." @default.
- W4308572023 created "2022-11-12" @default.
- W4308572023 creator A5011998834 @default.
- W4308572023 creator A5012691362 @default.
- W4308572023 creator A5021856684 @default.
- W4308572023 creator A5030390434 @default.
- W4308572023 creator A5057201507 @default.
- W4308572023 date "2023-02-09" @default.
- W4308572023 modified "2023-10-14" @default.
- W4308572023 title "The Integrated Nested Laplace Approximation for Fitting Dirichlet Regression Models" @default.
- W4308572023 cites W143236119 @default.
- W4308572023 cites W147015258 @default.
- W4308572023 cites W1487139063 @default.
- W4308572023 cites W1603339577 @default.
- W4308572023 cites W1818484123 @default.
- W4308572023 cites W1959492 @default.
- W4308572023 cites W2022080111 @default.
- W4308572023 cites W2025720061 @default.
- W4308572023 cites W2040490772 @default.
- W4308572023 cites W2057765075 @default.
- W4308572023 cites W2058927331 @default.
- W4308572023 cites W2062294426 @default.
- W4308572023 cites W2082920669 @default.
- W4308572023 cites W2093923965 @default.
- W4308572023 cites W2111940674 @default.
- W4308572023 cites W2114199337 @default.
- W4308572023 cites W2119283966 @default.
- W4308572023 cites W2130902307 @default.
- W4308572023 cites W2144673831 @default.
- W4308572023 cites W2144898279 @default.
- W4308572023 cites W2164595404 @default.
- W4308572023 cites W2202784011 @default.
- W4308572023 cites W2334099820 @default.
- W4308572023 cites W2340515955 @default.
- W4308572023 cites W2575771770 @default.
- W4308572023 cites W2609732036 @default.
- W4308572023 cites W2613408792 @default.
- W4308572023 cites W2740503477 @default.
- W4308572023 cites W2783751658 @default.
- W4308572023 cites W2803002867 @default.
- W4308572023 cites W2883509007 @default.
- W4308572023 cites W2889558316 @default.
- W4308572023 cites W2894471584 @default.
- W4308572023 cites W2904250115 @default.
- W4308572023 cites W2912734629 @default.
- W4308572023 cites W2916160768 @default.
- W4308572023 cites W2938252630 @default.
- W4308572023 cites W2949029836 @default.
- W4308572023 cites W2962733802 @default.
- W4308572023 cites W2966256579 @default.
- W4308572023 cites W4206339157 @default.
- W4308572023 cites W4237967735 @default.
- W4308572023 cites W4241487175 @default.
- W4308572023 cites W4288821578 @default.
- W4308572023 cites W4299542564 @default.
- W4308572023 cites W588132920 @default.
- W4308572023 doi "https://doi.org/10.1080/10618600.2022.2144330" @default.
- W4308572023 hasPublicationYear "2023" @default.
- W4308572023 type Work @default.
- W4308572023 citedByCount "0" @default.
- W4308572023 crossrefType "journal-article" @default.
- W4308572023 hasAuthorship W4308572023A5011998834 @default.
- W4308572023 hasAuthorship W4308572023A5012691362 @default.
- W4308572023 hasAuthorship W4308572023A5021856684 @default.
- W4308572023 hasAuthorship W4308572023A5030390434 @default.
- W4308572023 hasAuthorship W4308572023A5057201507 @default.
- W4308572023 hasBestOaLocation W43085720231 @default.
- W4308572023 hasConcept C101104100 @default.
- W4308572023 hasConcept C107673813 @default.
- W4308572023 hasConcept C11413529 @default.
- W4308572023 hasConcept C114614502 @default.
- W4308572023 hasConcept C118615104 @default.
- W4308572023 hasConcept C119857082 @default.
- W4308572023 hasConcept C134306372 @default.
- W4308572023 hasConcept C154945302 @default.
- W4308572023 hasConcept C169214877 @default.
- W4308572023 hasConcept C182310444 @default.
- W4308572023 hasConcept C22243797 @default.
- W4308572023 hasConcept C2776214188 @default.
- W4308572023 hasConcept C28826006 @default.
- W4308572023 hasConcept C33923547 @default.
- W4308572023 hasConcept C41008148 @default.
- W4308572023 hasConcept C45340560 @default.
- W4308572023 hasConcept C62438384 @default.
- W4308572023 hasConceptScore W4308572023C101104100 @default.
- W4308572023 hasConceptScore W4308572023C107673813 @default.
- W4308572023 hasConceptScore W4308572023C11413529 @default.
- W4308572023 hasConceptScore W4308572023C114614502 @default.
- W4308572023 hasConceptScore W4308572023C118615104 @default.
- W4308572023 hasConceptScore W4308572023C119857082 @default.
- W4308572023 hasConceptScore W4308572023C134306372 @default.
- W4308572023 hasConceptScore W4308572023C154945302 @default.
- W4308572023 hasConceptScore W4308572023C169214877 @default.
- W4308572023 hasConceptScore W4308572023C182310444 @default.
- W4308572023 hasConceptScore W4308572023C22243797 @default.
- W4308572023 hasConceptScore W4308572023C2776214188 @default.
- W4308572023 hasConceptScore W4308572023C28826006 @default.
- W4308572023 hasConceptScore W4308572023C33923547 @default.