Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308574794> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W4308574794 abstract "As a new type of technology, biochemical sensing technology has received great attention from scientific researchers. It is mainly used to develop artificial intelligence sensing equipment. The use of deep neural network algorithms to assist research and development can improve the speed and accuracy of data processing. By constructing a deep neural network model, it is possible to improve the data fitting ability in biochemical sensing equipment and reduce the cost of research and development. This article investigates the current situation of users using biochemical sensing equipment, and the results of the investigation are as follows: Users who know about biochemical sensing equipment account for 51.01% of the total number of people, and users who have never heard of biochemical sensing equipment are only 6.57%; doctors and scientific researchers use more biochemical sensing equipment, accounting for 36% and 34% of the total, respectively. The least users are workers, indicating that the educational level has certain limitations on the popularization of new technologies; among the common biochemical sensing equipment, there are 65 users who know the food composition analyzer and 78 users who know the enzyme electrode sensor, indicating that the two major concerns of users are medical health and food safety." @default.
- W4308574794 created "2022-11-12" @default.
- W4308574794 creator A5037578621 @default.
- W4308574794 date "2022-10-11" @default.
- W4308574794 modified "2023-10-18" @default.
- W4308574794 title "Biochemical Sensing Technology Based on Deep Neural Network Algorithm" @default.
- W4308574794 cites W2409973804 @default.
- W4308574794 cites W2562115329 @default.
- W4308574794 cites W2565377394 @default.
- W4308574794 cites W2753887313 @default.
- W4308574794 cites W2756943612 @default.
- W4308574794 cites W2767740741 @default.
- W4308574794 cites W2885565273 @default.
- W4308574794 cites W2964052062 @default.
- W4308574794 cites W3005970591 @default.
- W4308574794 cites W3131364727 @default.
- W4308574794 doi "https://doi.org/10.23919/wac55640.2022.9934415" @default.
- W4308574794 hasPublicationYear "2022" @default.
- W4308574794 type Work @default.
- W4308574794 citedByCount "0" @default.
- W4308574794 crossrefType "proceedings-article" @default.
- W4308574794 hasAuthorship W4308574794A5037578621 @default.
- W4308574794 hasConcept C11413529 @default.
- W4308574794 hasConcept C119857082 @default.
- W4308574794 hasConcept C154945302 @default.
- W4308574794 hasConcept C2522767166 @default.
- W4308574794 hasConcept C41008148 @default.
- W4308574794 hasConcept C50644808 @default.
- W4308574794 hasConceptScore W4308574794C11413529 @default.
- W4308574794 hasConceptScore W4308574794C119857082 @default.
- W4308574794 hasConceptScore W4308574794C154945302 @default.
- W4308574794 hasConceptScore W4308574794C2522767166 @default.
- W4308574794 hasConceptScore W4308574794C41008148 @default.
- W4308574794 hasConceptScore W4308574794C50644808 @default.
- W4308574794 hasLocation W43085747941 @default.
- W4308574794 hasOpenAccess W4308574794 @default.
- W4308574794 hasPrimaryLocation W43085747941 @default.
- W4308574794 hasRelatedWork W2386387936 @default.
- W4308574794 hasRelatedWork W2961085424 @default.
- W4308574794 hasRelatedWork W3046775127 @default.
- W4308574794 hasRelatedWork W3107474891 @default.
- W4308574794 hasRelatedWork W4205958290 @default.
- W4308574794 hasRelatedWork W4286629047 @default.
- W4308574794 hasRelatedWork W4306321456 @default.
- W4308574794 hasRelatedWork W4306674287 @default.
- W4308574794 hasRelatedWork W1629725936 @default.
- W4308574794 hasRelatedWork W4224009465 @default.
- W4308574794 isParatext "false" @default.
- W4308574794 isRetracted "false" @default.
- W4308574794 workType "article" @default.