Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308574802> ?p ?o ?g. }
- W4308574802 endingPage "1907" @default.
- W4308574802 startingPage "1907" @default.
- W4308574802 abstract "Building energy simulation plays a significant role in buildings, with applications such as building performance evaluation, retrofit decisions and the optimization of building operations. However, the wide range of model inputs has limited much research into empirically customized case studies due to the insufficient availability of data inputs or the lack of systematic feature selection of key inputs. To address this gap, this study proposes the concept of minimum variable sets (MVSs) for building energy-prediction models to improve the general applicability of building energy prediction using forward simulation. An MVS, in this paper, refers to a variable set that contains the most indispensable energy-related variables/features for annual building energy prediction. This study developed MVSs for office buildings by applying feature engineering algorithms to a Building Performance Database (BPD), which was established by integrating the design of experiments (DoE) method with high-dimensional data-space metrics, as well as parallel simulation. Supervised feature dimension reduction methods and multiple statistical criteria were adopted to choose different numbers of indispensable variables from the primary 16 building variables. The hierarchical MVSs that consist of the selected variables are characterized by the most influential features for building energy prediction, with certain requirements for prediction accuracy. To further improve the feasibility of MVSs, this study utilized two separate office buildings located in Shanghai and California as validation cases and provided comparable prediction accuracies across different sizes of MVS. The results showed that the MVS that has 12 variables has higher prediction accuracy than that which has 9 variables, followed by that which has 7 variables. Finally, the quantitatively hierarchical correlations between different sizes of MVS with different prediction accuracies for annual building energy could provide potential support for reasonable decision-making regarding building energy model variables, especially when comprehensive consideration is needed of the limited cost and data availability, and the acceptable accuracy of building energy." @default.
- W4308574802 created "2022-11-12" @default.
- W4308574802 creator A5009633977 @default.
- W4308574802 creator A5012613080 @default.
- W4308574802 creator A5039242472 @default.
- W4308574802 creator A5057678811 @default.
- W4308574802 creator A5071317221 @default.
- W4308574802 date "2022-11-07" @default.
- W4308574802 modified "2023-09-30" @default.
- W4308574802 title "A New Explication of Minimum Variable Sets (MVS) for Building Energy Prediction Based on Building Performance Database" @default.
- W4308574802 cites W1668762951 @default.
- W4308574802 cites W1823350575 @default.
- W4308574802 cites W1996158919 @default.
- W4308574802 cites W1997334587 @default.
- W4308574802 cites W2017723190 @default.
- W4308574802 cites W2023543162 @default.
- W4308574802 cites W2024075368 @default.
- W4308574802 cites W2047143310 @default.
- W4308574802 cites W2154053567 @default.
- W4308574802 cites W2158603667 @default.
- W4308574802 cites W2335157982 @default.
- W4308574802 cites W2490146683 @default.
- W4308574802 cites W2626886316 @default.
- W4308574802 cites W2754029504 @default.
- W4308574802 cites W2767695914 @default.
- W4308574802 cites W2790764151 @default.
- W4308574802 cites W2900724415 @default.
- W4308574802 cites W2914839305 @default.
- W4308574802 cites W2922147260 @default.
- W4308574802 cites W2937280260 @default.
- W4308574802 cites W2943921667 @default.
- W4308574802 cites W2972203853 @default.
- W4308574802 cites W3025114501 @default.
- W4308574802 cites W3026438692 @default.
- W4308574802 cites W3045493872 @default.
- W4308574802 cites W3045609934 @default.
- W4308574802 cites W3046701448 @default.
- W4308574802 cites W3135387830 @default.
- W4308574802 cites W3139149890 @default.
- W4308574802 cites W3143452858 @default.
- W4308574802 cites W4233105646 @default.
- W4308574802 doi "https://doi.org/10.3390/buildings12111907" @default.
- W4308574802 hasPublicationYear "2022" @default.
- W4308574802 type Work @default.
- W4308574802 citedByCount "1" @default.
- W4308574802 countsByYear W43085748022023 @default.
- W4308574802 crossrefType "journal-article" @default.
- W4308574802 hasAuthorship W4308574802A5009633977 @default.
- W4308574802 hasAuthorship W4308574802A5012613080 @default.
- W4308574802 hasAuthorship W4308574802A5039242472 @default.
- W4308574802 hasAuthorship W4308574802A5057678811 @default.
- W4308574802 hasAuthorship W4308574802A5071317221 @default.
- W4308574802 hasBestOaLocation W43085748021 @default.
- W4308574802 hasConcept C105795698 @default.
- W4308574802 hasConcept C111472728 @default.
- W4308574802 hasConcept C119857082 @default.
- W4308574802 hasConcept C124101348 @default.
- W4308574802 hasConcept C127413603 @default.
- W4308574802 hasConcept C134306372 @default.
- W4308574802 hasConcept C138885662 @default.
- W4308574802 hasConcept C146978453 @default.
- W4308574802 hasConcept C147176958 @default.
- W4308574802 hasConcept C148483581 @default.
- W4308574802 hasConcept C177264268 @default.
- W4308574802 hasConcept C182365436 @default.
- W4308574802 hasConcept C186370098 @default.
- W4308574802 hasConcept C190831278 @default.
- W4308574802 hasConcept C199360897 @default.
- W4308574802 hasConcept C202444582 @default.
- W4308574802 hasConcept C204323151 @default.
- W4308574802 hasConcept C26517878 @default.
- W4308574802 hasConcept C2776401178 @default.
- W4308574802 hasConcept C2781374135 @default.
- W4308574802 hasConcept C33676613 @default.
- W4308574802 hasConcept C33923547 @default.
- W4308574802 hasConcept C38652104 @default.
- W4308574802 hasConcept C41008148 @default.
- W4308574802 hasConcept C41895202 @default.
- W4308574802 hasConcept C45804977 @default.
- W4308574802 hasConceptScore W4308574802C105795698 @default.
- W4308574802 hasConceptScore W4308574802C111472728 @default.
- W4308574802 hasConceptScore W4308574802C119857082 @default.
- W4308574802 hasConceptScore W4308574802C124101348 @default.
- W4308574802 hasConceptScore W4308574802C127413603 @default.
- W4308574802 hasConceptScore W4308574802C134306372 @default.
- W4308574802 hasConceptScore W4308574802C138885662 @default.
- W4308574802 hasConceptScore W4308574802C146978453 @default.
- W4308574802 hasConceptScore W4308574802C147176958 @default.
- W4308574802 hasConceptScore W4308574802C148483581 @default.
- W4308574802 hasConceptScore W4308574802C177264268 @default.
- W4308574802 hasConceptScore W4308574802C182365436 @default.
- W4308574802 hasConceptScore W4308574802C186370098 @default.
- W4308574802 hasConceptScore W4308574802C190831278 @default.
- W4308574802 hasConceptScore W4308574802C199360897 @default.
- W4308574802 hasConceptScore W4308574802C202444582 @default.
- W4308574802 hasConceptScore W4308574802C204323151 @default.
- W4308574802 hasConceptScore W4308574802C26517878 @default.
- W4308574802 hasConceptScore W4308574802C2776401178 @default.