Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308574816> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4308574816 abstract "In this paper, image noise reduction research is carried out based on in-depth learning. In specific life, due to the lack of perfection of equipment and system, the image will often be polluted by more noise, resulting in unclear image details and reduced image clarity. Better image display ability can be obtained when BP neural network is used to denoise the image. Through the research on the activation function and optimization network function based on weighted neural network (CNN), combined with multi feature extraction technology and other in-depth learning models, we can learn and extract the important features of the input image. At the same time, we propose CNN back propagation optimization algorithm. At the same time, the training speed of the model is improved and the convergence speed of the algorithm is accelerated. Based on the deep residual learning of convolution network, the algorithm is used to remove the noise in the model. This is a better image denoising network model. Compared with other excellent denoising algorithms, the analysis and comparison show that the optimized denoising algorithm can not reduce the clarity of the image. At the same time, the image noise pollution is greatly improved and the image details are clearer." @default.
- W4308574816 created "2022-11-12" @default.
- W4308574816 creator A5041720910 @default.
- W4308574816 creator A5071985886 @default.
- W4308574816 creator A5087159248 @default.
- W4308574816 date "2022-10-11" @default.
- W4308574816 modified "2023-09-28" @default.
- W4308574816 title "An image denoising method based on depth learning" @default.
- W4308574816 cites W2947760388 @default.
- W4308574816 cites W2984367601 @default.
- W4308574816 cites W3095381932 @default.
- W4308574816 cites W3121751298 @default.
- W4308574816 cites W3134036316 @default.
- W4308574816 cites W3158860970 @default.
- W4308574816 doi "https://doi.org/10.23919/wac55640.2022.9934612" @default.
- W4308574816 hasPublicationYear "2022" @default.
- W4308574816 type Work @default.
- W4308574816 citedByCount "0" @default.
- W4308574816 crossrefType "proceedings-article" @default.
- W4308574816 hasAuthorship W4308574816A5041720910 @default.
- W4308574816 hasAuthorship W4308574816A5071985886 @default.
- W4308574816 hasAuthorship W4308574816A5087159248 @default.
- W4308574816 hasConcept C101453961 @default.
- W4308574816 hasConcept C106430172 @default.
- W4308574816 hasConcept C108583219 @default.
- W4308574816 hasConcept C115961682 @default.
- W4308574816 hasConcept C138885662 @default.
- W4308574816 hasConcept C153180895 @default.
- W4308574816 hasConcept C154945302 @default.
- W4308574816 hasConcept C163294075 @default.
- W4308574816 hasConcept C2776401178 @default.
- W4308574816 hasConcept C2983327147 @default.
- W4308574816 hasConcept C31972630 @default.
- W4308574816 hasConcept C41008148 @default.
- W4308574816 hasConcept C41895202 @default.
- W4308574816 hasConcept C45347329 @default.
- W4308574816 hasConcept C50644808 @default.
- W4308574816 hasConcept C52622490 @default.
- W4308574816 hasConcept C81363708 @default.
- W4308574816 hasConcept C9417928 @default.
- W4308574816 hasConcept C99498987 @default.
- W4308574816 hasConceptScore W4308574816C101453961 @default.
- W4308574816 hasConceptScore W4308574816C106430172 @default.
- W4308574816 hasConceptScore W4308574816C108583219 @default.
- W4308574816 hasConceptScore W4308574816C115961682 @default.
- W4308574816 hasConceptScore W4308574816C138885662 @default.
- W4308574816 hasConceptScore W4308574816C153180895 @default.
- W4308574816 hasConceptScore W4308574816C154945302 @default.
- W4308574816 hasConceptScore W4308574816C163294075 @default.
- W4308574816 hasConceptScore W4308574816C2776401178 @default.
- W4308574816 hasConceptScore W4308574816C2983327147 @default.
- W4308574816 hasConceptScore W4308574816C31972630 @default.
- W4308574816 hasConceptScore W4308574816C41008148 @default.
- W4308574816 hasConceptScore W4308574816C41895202 @default.
- W4308574816 hasConceptScore W4308574816C45347329 @default.
- W4308574816 hasConceptScore W4308574816C50644808 @default.
- W4308574816 hasConceptScore W4308574816C52622490 @default.
- W4308574816 hasConceptScore W4308574816C81363708 @default.
- W4308574816 hasConceptScore W4308574816C9417928 @default.
- W4308574816 hasConceptScore W4308574816C99498987 @default.
- W4308574816 hasLocation W43085748161 @default.
- W4308574816 hasOpenAccess W4308574816 @default.
- W4308574816 hasPrimaryLocation W43085748161 @default.
- W4308574816 hasRelatedWork W2036616438 @default.
- W4308574816 hasRelatedWork W2279398222 @default.
- W4308574816 hasRelatedWork W2732542196 @default.
- W4308574816 hasRelatedWork W2773120646 @default.
- W4308574816 hasRelatedWork W2939446501 @default.
- W4308574816 hasRelatedWork W3011074480 @default.
- W4308574816 hasRelatedWork W3044651058 @default.
- W4308574816 hasRelatedWork W3156786002 @default.
- W4308574816 hasRelatedWork W4299822940 @default.
- W4308574816 hasRelatedWork W4312417841 @default.
- W4308574816 isParatext "false" @default.
- W4308574816 isRetracted "false" @default.
- W4308574816 workType "article" @default.