Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308584023> ?p ?o ?g. }
Showing items 1 to 46 of
46
with 100 items per page.
- W4308584023 endingPage "1452" @default.
- W4308584023 startingPage "1447" @default.
- W4308584023 abstract "In order to help readers stay up-to-date in the field, each issue of Progress in Photovoltaics will contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including IEEE Journal of Photovoltaics, Solar Energy Materials and Solar Cells, Renewable Energy, Renewable and Sustainable Energy Reviews, Journal of Applied Physics, and Applied Physics Letters. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions please email Ziv Hameiri at [email protected]. Geng, JY, Zhang, H, Meng, XH, Gao, H, Rong, W, Xie, H. Three-dimensional Kelvin probe force microscopy. ACS Applied Materials and Interfaces 2022; 14(28): 32719–32728. doi:10.1021/acsami.2c07645 Conrad, B, Hamadani, BH. Local voltage mapping of solar cells in the presence of localized radiative defects. Applied Physics Letters 2022; 121(3): 031102. doi:10.1063/5.0097572 Su, BY, Chen, HY, Zhou, Z. BAF-detector: an efficient CNN-based detector for photovoltaic cell defect detection. IEEE Transactions on Industrial Electronics 2022; 69(3): 3161–3171. doi:10.1109/TIE.2021.3070507 Kang, JH, Lee, JH, Walker, B, Seo, JH, Chang, GS. Understanding interfacial energy structures in organic solar cells using photoelectron spectroscopy: A review. Journal of Applied Physics 2022; 132(5): 050701. doi:10.1063/5.0091960 Vollbrecht, J, Tokmoldin, N, Sun, BW, Brus, VV, Shoaee, S, Neher, D. Determination of the charge carrier density in organic solar cells: A tutorial. Journal of Applied Physics 2022; 131(22): 221101. doi:10.1063/5.0094955 Bommes, L, Buerhop-Lutz, C, Pickel, T, Hauch, J, Brabec, C, Marius Peters, I. Georeferencing of photovoltaic modules from aerial infrared videos using structure-from-motion. Progress in Photovoltaics: Research and Applications 2022; 30(9): 1122–1135. doi:10.1002/pip.3564 Bui, AD, Mozaffari, N, Truong, TN, et al. Electrical properties of perovskite solar cells by illumination intensity and temperature-dependent photoluminescence imaging. Progress in Photovoltaics: Research and Applications 2022; 30(8): 1038–1044. doi:10.1002/pip.3498 Golive, YR, Kottantharayil, A, Shiradkar, N. Sensitivity of accuracy of various standard test condition correction procedures to the errors in temperature coefficients of c-Si PV modules. Progress in Photovoltaics: Research and Applications 2022; 30(9): 1087–1100. doi:10.1002/pip.3559 Omer, MI, Wang, X, Tang, X. Determination of dominant recombination site in perovskite solar cells through illumination-side-dependent impedance spectroscopy. Progress in Photovoltaics: Research and Applications 2022; 30(10): 1228–1237. doi:10.1002/pip.3571 Rey, G, Kunz, O, Green, M, Trupke, T. Luminescence imaging of solar modules in full sunlight using ultranarrow bandpass filters. Progress in Photovoltaics: Research and Applications 2022; 30(9): 1115–1121. doi:10.1002/pip.3563 Liu, DH, Wright, M, Goodarzi, M, Wilshaw, PR, Hamer, P, Bonilla, RS. Observations of contact resistance in TOPCon and PERC solar cells. Solar Energy Materials and Solar Cells 2022; 246: 111934. doi:10.1016/j.solmat.2022.111934 Mintairov, MA, Evstropov, VV, Mintairov, SA, et al. Using electroluminescence of subcells for obtaining fundamental resistive-less dark IV characteristic of multi-junction solar cells. Solar Energy Materials and Solar Cells 2022; 245: 111863. doi:10.1016/j.solmat.2022.111863 Campanari, V, Martelli, F, Agresti, A, et al. Reevaluation of photoluminescence intensity as an indicator of efficiency in perovskite solar cells. Solar RRL 2022; 6(8): 2200049. doi:10.1002/solr.202200049 Dong, G, Sang, J, Peng, C-W, Liu, F, Zhou, Y, Yu, C. Power conversion efficiency of 25.26% for silicon heterojunction solar cell with transition metal element doped indium oxide transparent conductive film as front electrode. Progress in Photovoltaics: Research and Applications 2022; 30(9): 1136–1143. doi:10.1002/pip.3565 Han, C, Santbergen, R, Duffelen, M, et al. Towards bifacial silicon heterojunction solar cells with reduced TCO use. Progress in Photovoltaics: Research and Applications 2022; 30(7): 750–762. doi:10.1002/pip.3550 Kang, D, Sio, HC, Stuckelberger, J, et al. Comparison of firing stability between p- and n-type polysilicon passivating contacts. Progress in Photovoltaics: Research and Applications 2022; 30(8): 970–980. doi:10.1002/pip.3544 Le, AHT, Dréon, J, Michel, JI, et al. Temperature-dependent performance of silicon heterojunction solar cells with transition-metal-oxide-based selective contacts. Progress in Photovoltaics: Research and Applications 2022; 30(8): 981–993. doi:10.1002/pip.3509 Singh, S, Choulat, P, Govaerts, J, et al. Large area co-plated bifacial n-PERT cells with polysilicon passivating contacts on both sides. Progress in Photovoltaics: Research and Applications 2022; 30(8): 899–909. doi:10.1002/pip.3548 Zhao, Y, Mazzarella, L, Procel, P, et al. Ultra-thin electron collectors based on nc-Si:H for high-efficiency silicon heterojunction solar cells. Progress in Photovoltaics: Research and Applications 2022; 30(8): 809–822. doi:10.1002/pip.3502 Black, LE, Macdonald, DH. Improved Auger recombination models: Consequences for c-Si solar cells. Solar Energy Materials and Solar Cells 2022; 246: 111914. doi:10.1016/j.solmat.2022.111914 Jaubert, J-N, Nair, SV, Cai, J, et al. Conductive adhesive based shingled solar cells: Electrical degradation under cyclic loading. Solar Energy Materials and Solar Cells 2022; 245: 111823. doi:10.1016/j.solmat.2022.111823 Jiang, K, Yang, YH, Yan, Z, et al. Balance of efficiency and stability of silicon heterojunction solar cells. Solar Energy Materials and Solar Cells 2022; 243: 111801. doi:10.1016/j.solmat.2022.111801 Kluska, S, Haberstoh, R, Grübel, B, et al. Enabling savings in silver consumption and poly-Si thickness by integration of plated Ni/Cu/Ag contacts for bifacial TOPCon solar cells. Solar Energy Materials and Solar Cells 2022; 246: 111889. doi:10.1016/j.solmat.2022.111889 Li, K, Wang, Z, Liu, C, et al. A green method to separate different layers in photovoltaic modules by using DMPU as a separation agent. Solar Energy Materials and Solar Cells 2022; 245: 111870. doi:10.1016/j.solmat.2022.111870 Ling, Z, Lim, QX, Lim, KN, Ho, JW, Wang, S. An industrial scale solution to achieving light-induced degradation (LID) free silicon solar systems: >5% performance gain at system level with advanced hydrogenation technology. Solar Energy Materials and Solar Cells 2022; 246: 111888. doi:10.1016/j.solmat.2022.111888 Linke, J, Glatthaar, R, Huster, F, et al. Poly-Si thickness and temperature dependent oxide disruption induced by penetration of the interfacial oxide in (p) poly-Si/SiOx passivating contacts. Solar Energy Materials and Solar Cells 2022; 246: 111890. doi:10.1016/j.solmat.2022.111890 Liu, Z, Lin, N, Zhang, Q, et al. 24.4% industrial tunnel oxide passivated contact solar cells with ozone-gas oxidation Nano SiOx and tube PECVD prepared in-situ doped polysilicon. Solar Energy Materials and Solar Cells 2022; 243: 111803. doi:10.1016/j.solmat.2022.111803 Macco, B, Van de Poll, ML, Van de Loo, BWH, et al. Temporal and spatial atomic layer deposition of Al-doped zinc oxide as a passivating conductive contact for silicon solar cells. Solar Energy Materials and Solar Cells 2022; 245: 111869. doi:10.1016/j.solmat.2022.111869 Prasad, DS, Sanjana, B, Kiran, DS, Srinivasa Kumar, PP, Ratheesh, R. Process optimization studies of essential parameters in the organic solvent method for the recycling of waste crystalline silicon photovoltaic modules. Solar Energy Materials and Solar Cells 2022; 245: 111850. doi:10.1016/j.solmat.2022.111850 Zhou, JK, Huang, Q, Zhao, Q, et al. Performance promotion of aluminum oxide capping layer through interface engineering for tunnel oxide passivating contacts. Solar Energy Materials and Solar Cells 2022; 245: 111865. doi:10.1016/j.solmat.2022.111865 Chen, BB, Wang, PY, Li, RJ, et al. A two-step solution-processed wide-bandgap perovskite for monolithic silicon-based tandem solar cells with >27% efficiency. ACS Energy Letters 2022; 7(8): 2771–2780. doi:10.1021/acsenergylett.2c01488 Ruiz-Preciado, MA, Gota, F, Fassl, P, et al. Monolithic two-terminal perovskite/CIS tandem solar cells with efficiency approaching 25%. ACS Energy Letters 2022; 7(7): 2273–2281. doi:10.1021/acsenergylett.2c00707 Sveinbjörnsson, K, Li, BR, Mariotti, S, et al. Monolithic perovskite/silicon tandem solar cell with 28.7% efficiency using industrial silicon bottom cells. ACS Energy Letters 2022; 7(8): 2654–2656. doi:10.1021/acsenergylett.2c01358 De Bastiani, M, Subbiah, AS, Babics, M, et al. Bifacial perovskite/silicon tandem solar cells. Joule 2022; 6(7): 1431–1445. doi:10.1016/j.joule.2022.05.014 Kato, Y, Katayama, H, Kobayashi, T, et al. Global prediction of the energy yields for hybrid perovskite/Si tandem and Si heterojunction single solar modules. Progress in Photovoltaics: Research and Applications 2022; 30(10): 1198–1218. doi:10.1002/pip.3569 Messmer, C, Schön, J, Lohmüller, S, et al. How to make PERC suitable for perovskite–silicon tandem solar cells: A simulation study. Progress in Photovoltaics: Research and Applications 2022; 30(8): 1023–1037. doi:10.1002/pip.3524 Liu, J, De Bastiani, M, Aydin, E, et al. Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx. Science 2022; 377(6603): 302–306. doi:10.1126/science.abn8910 Cao, Y, Liu, CY, Yang, TH, et al. Gradient bandgap modification for highly efficient carrier transport in antimony sulfide-selenide tandem solar cells. Solar Energy Materials and Solar Cells 2022; 246: 111926. doi:10.1016/j.solmat.2022.111926 Engelbrecht, DA, Synowicki, R, Tiedje, T. Luminescent coupling and efficiency of bifacial GaAs/Si tandem solar cells. Solar Energy Materials and Solar Cells 2022; 245: 111800. doi:10.1016/j.solmat.2022.111800 Yadav, S, Kareem, MA, Kodali, HK, et al. Optoelectronic modeling of all-perovskite tandem solar cells with design rules to achieve >30% efficiency. Solar Energy Materials and Solar Cells 2022; 242: 111780. doi:10.1016/j.solmat.2022.111780 Yan, LL, Li, YX, Shi, BA, et al. Reducing electrical losses of textured monolithic perovskite/silicon tandem solar cells by tailoring nanocrystalline silicon tunneling recombination junction. Solar Energy Materials and Solar Cells 2022; 245: 111868. doi:10.1016/j.solmat.2022.111868 Wang, JW, Cui, Y, Xu, Y, et al. A new polymer donor enables binary all-polymer organic photovoltaic cells with 18% efficiency and excellent mechanical robustness. Advanced Materials 2022; 34(35): 2205009. doi:10.1002/adma.202205009 Yao, HF, Hou, JH. Recent advances in single-junction organic solar cells. Angewandte Chemie-International Edition 2022; 61(37): e202209021. doi:10.1002/anie.202209021 Hou, HY, Zhang, YF, Chen, JD, et al. Boosted radiative energy transfer of plasmonic electrodes enables flexible organic photovoltaics with efficiency over 18%. Chemical Engineering Journal 2022; 450: 138181. doi:10.1016/j.cej.2022.138181 Li, ZY, Liang, YF, Qian, XT, Ying, L, Cao, Y. Suppressing non-radiative loss via a low-cost solvent additive enables high-stable all-polymer solar cells with 16.13% efficiency. Chemical Engineering Journal 2022; 446: 136877. doi:10.1016/j.cej.2022.136877 Miyake, Y, Kranthiraja, K, Ishiwari, F, Saeki, A. Improved predictions of organic photovoltaic performance through machine learning models empowered by artificially generated failure data. Chemistry of Materials 2022; 34(15): 6912–6920. doi:10.1021/acs.chemmater.2c01294 Yang, Y, Wang, JW, Bi, PQ, et al. Universal hole transporting material via mutual doping for conventional, inverted, and blade-coated large-area organic solar cells. Chemistry of Materials 2022; 34(14): 6312–6322. doi:10.1021/acs.chemmater.2c00655 Liu, X, Zhong, Z, Zhu, R, Yu, J, Li, G. Aperiodic band-pass electrode enables record-performance transparent organic photovoltaics. Joule 2022; 6(8): 1918–1930. doi:10.1016/j.joule.2022.06.009 Zhou, X, Zhao, C, Alotaibi, AN, et al. Electrical edge effect induced photocurrent overestimation in low-light organic photovoltaics. Joule 2022; 6(8): 1904–1917. doi:10.1016/j.joule.2022.06.008 Wang, J, Chen, HB, Xu, XY, et al. An acceptor with an asymmetric and extended conjugated backbone for high-efficiency organic solar cells with low nonradiative energy loss. Journal of Materials Chemistry A 2022; 10(31): 16714–16721. doi:10.1039/D2TA03956G Chen, ZY, Zheng, H, Ma, W, Yan, H. Study of the doping effect on imperfect morphology at photovoltaic heterojunctions in bilayer organic solar cells. Journal of Materials Chemistry C 2022; 10(33): 11848–11854. doi:10.1039/D2TC01920E Li, C, Gu, X, Chen, Z, et al. Achieving record-efficiency organic solar cells upon tuning the conformation of solid additives. Journal of the American Chemical Society 2022; 144(32): 14731–14739. doi:10.1021/jacs.2c05303 Shen, X, Lai, X, Lai, H, et al. Isomerism strategy to optimize aggregation and morphology for superior polymer solar cells. Macromolecules 2022; 55(15): 6384–6393. doi:10.1021/acs.macromol.2c00837 Tang, H, Lv, J, Liu, K, et al. Self-assembly enables simple structure organic photovoltaics via green-solvent and open-air-printing: Closing the lab-to-fab gap. Materials Today 2022; 55: 46–55. doi:10.1016/j.mattod.2022.04.005 Zhang, S, Bi, F, Han, J, Shang, C, Kang, X, Bao, X. Boosts charge utilization and enables high performance organic solar cells by marco- and micro- synergistic method. Nano Energy 2022; 102: 107742. doi:10.1016/j.nanoen.2022.107742 Chen, Z, Wang, J, Wu, HB, et al. A transparent electrode based on solution-processed ZnO for organic optoelectronic devices. Nature Communications 2022; 13(1): 4387. doi:10.1038/s41467-022-32010-y Adel, R, Morse, G, Silvestri, F, et al. Understanding the blade coated to roll-to-roll coated performance gap in organic photovoltaics. Solar Energy Materials and Solar Cells 2022; 245: 111852. doi:10.1016/j.solmat.2022.111852 Huang, YW, Li, DY, Chen, Z. Potential analysis of a system hybridizing dye-sensitized solar cell with thermally regenerative electrochemical devices. Energy 2022; 260: 125102. doi:10.1016/j.energy.2022.125102 Nandi, P, Das, D. Morphological variations of ZnO nanostructures and its influence on the photovoltaic performance when used as photoanodes in dye sensitized solar cells. Solar Energy Materials and Solar Cells 2022; 243: 111811. doi:10.1016/j.solmat.2022.111811 Ji, XF, Feng, K, Ma, SX, et al. Interfacial passivation engineering for highly efficient perovskite solar cells with a fill factor over 83%. ACS Nano 2022; 16(8): 11902–11911. doi:10.1021/acsnano.2c01547 Guo, JJ, Sun, JG, Hu, L, et al. Indigo: A natural molecular passivator for efficient perovskite solar cells. Advanced Energy Materials 2022; 12(33): 2200537. doi:10.1002/aenm.202200537 Tan, S, Yu, BC, Cui, YQ, et al. Temperature-reliable low-dimensional perovskites passivated black-phase CsPbI3 toward stable and efficient photovoltaics. Angewandte Chemie-International Edition 2022; 61(23): e202201300. doi:10.1002/anie.202201300 Zhao, JH, Mu, XJ, Wang, LY, Fang, Z, Zou, X, Cao, J. Homogeneously large polarons in aromatic passivators improves charge transport between perovskite grains for >24% efficiency in photovoltaics. Angewandte Chemie-International Edition 2022; 61(14): e202116308. doi:10.1002/anie.202116308 Sun, Y, Yang, S, Pang, Z, et al. A full range of defect passivation strategy targeting efficient and stable planar perovskite solar cells. Chemical Engineering Journal 2023; 451: 138800. doi:10.1016/j.cej.2022.138800 Bing, J, Caro, LG, Talathi, HP, Chang, NL, Mckenzie, DR, Ho-Baillie, AWY. Perovskite solar cells for building integrated photovoltaics—glazing applications. Joule 2022; 6(7): 1446–1474. doi:10.1016/j.joule.2022.06.003 Liu, W, Lu, Y, Wei, D, et al. Screening interface passivation materials intelligently through machine learning for highly efficient perovskite solar cells. Journal of Materials Chemistry A 2022; 10(34): 17782–17789. doi:10.1039/D2TA04788H Zhuang, Q, Zhang, C, Gong, C, et al. Tailoring multifunctional anion modifiers to modulate interfacial chemical interactions for efficient and stable perovskite solar cells. Nano Energy 2022; 102: 107747. doi:10.1016/j.nanoen.2022.107747 Li, ZP, Wang, X, Wang, ZW, et al. Ammonia for post-healing of formamidinium-based perovskite films. Nature Communications 2022; 13(1): 4417, doi:10.1038/s41467-022-32047-z Lim, J, Kober-Czerny, M, Lin, YH, et al. Long-range charge carrier mobility in metal halide perovskite thin-films and single crystals via transient photo-conductivity. Nature Communications 2022; 13(1): 4201, doi:10.1038/s41467-022-31569-w Liu, KK, Luo, YJ, Jin, YB, et al. Moisture-triggered fast crystallization enables efficient and stable perovskite solar cells. Nature Communications 2022; 13(1): 4891, doi:10.1038/s41467-022-32482-y Zhang, TK, Wang, F, Kim, HB, et al. Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science 2022; 377(6605): 495–501. doi:10.1126/science.abo2757 Zhao, XM, Liu, TR, Burlingame, QC, et al. Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells. Science 2022; 377(6603): 307–310. doi:10.1126/science.abn5679 Zhao, Y, Ma, F, Qu, ZH, et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 2022; 377(6605): 531–534. doi:10.1126/science.abp8873 Turnbull, MJ, Yiu, YM, Goldman, M, Ding, Z, Ding, Z. Favorable bonding and band structures of Cu2ZnSnS4 and CdS films and their photovoltaic interfaces. ACS Applied Materials and Interfaces 2022; 14(28): 32683–32695. doi:10.1021/acsami.2c06892 Aninat, R, Bakker, K, Jouard, L, Ott Cruz, MGS, Yilmaz, P, Theelen, M. Extraction and microscopic analysis of partial shading-induced defects in a commercial CIGS PV module. Progress in Photovoltaics: Research and Applications 2022; 30(9): 1101–1114. doi:10.1002/pip.3561 Tsoulka, P, Crossay, A, Arzel, L, Barreau, N, Barreau, N. Alternative alkali fluoride post-deposition treatment under elemental sulfur atmosphere for high-efficiency Cu (In,Ga)Se2-based solar cells. Progress in Photovoltaics: Research and Applications 2022; 30(8): 835–842. doi:10.1002/pip.3508 Wolter, MH, Carron, R, Avancini, E, et al. How band tail recombination influences the open-circuit voltage of solar cells. Progress in Photovoltaics: Research and Applications 2022; 30(7): 702–712. doi:10.1002/pip.3449 Colegrove, E, Good, B, Abbas, A, et al. Investigating the role of copper in arsenic doped Cd(Se,Te) photovoltaics. Solar Energy Materials and Solar Cells 2022; 246: 111886. doi:10.1016/j.solmat.2022.111886 Good, B, Colegrove, E, Reese, MO. Effects of absorber near-interface compensation on Cd(Se,Te) solar cell performance. Solar Energy Materials and Solar Cells 2022; 246: 111928. doi:10.1016/j.solmat.2022.111928 Wei, Y, Nakamura, M, Ding, C, et al. Unraveling the organic and inorganic passivation mechanism of ZnO nanowires for construction of efficient bulk heterojunction quantum dot solar cells. ACS Applied Materials and Interfaces 2022; 14(31): 36268–36276. doi:10.1021/acsami.2c10508 Romano, V, Agresti, A, Verduci, R, D’Angelo, G. Advances in perovskites for photovoltaic applications in space. ACS Energy Letters 2022; 7(8): 2490–2514. doi:10.1021/acsenergylett.2c01099 Zhang, QM, Zhang, BG, Guo, HL, Tang, Y, Song, J, Sun, Q. Low-intensity low-temperature (LILT) solar cells for deep space missions. Applied Physics a-Materials Science and Processing 2022; 128(10): 852. doi:10.1007/s00339-022-05985-0 Jia, D, Chen, J, Qiu, J, et al. Tailoring solvent-mediated ligand exchange for CsPbI3 perovskite quantum dot solar cells with efficiency exceeding 16.5%. Joule 2022; 6(7): 1632–1653. doi:10.1016/j.joule.2022.05.007 Lombardero, I, Cifuentes, L, Gabás, M, Algora, C. Manufacturing process for III–V multijunction solar cells on germanium substrates with a total thickness below 60 μm. Progress in Photovoltaics: Research and Applications 2022; 30(7): 740–749. doi:10.1002/pip.3547 Schön, J, Bissels, GMMW, Mulder, P, et al. Improvements in ultra-light and flexible epitaxial lift-off GaInP/GaAs/GaInAs solar cells for space applications. Progress in Photovoltaics: Research and Applications 2022; 30(8): 1003–1011. doi:10.1002/pip.3542 Sojib Ahmed, M, Rezwan Khan, M, Haque, A, Ryyan Khan, M. Agrivoltaics analysis in a techno-economic framework: understanding why agrivoltaics on rice will always be profitable. Applied Energy 2022; 323: 119560. doi:10.1016/j.apenergy.2022.119560 Smith, SE, Viggiano, B, Ali, N, et al. Increased panel height enhances cooling for photovoltaic solar farms. Applied Energy 2022; 325: 119819. doi:10.1016/j.apenergy.2022.119819 Wang, P, Yan, XL, Zeng, JY, Luo, C, Wang, C. Anti-reflective superhydrophobic coatings with excellent durable and self-cleaning properties for solar cells. Applied Surface Science 2022; 602: 154408. doi:10.1016/j.apsusc.2022.154408 Huang, P, Hu, G, Zhao, X, Lu, L, Ding, H, Li, J. Effect of organics on the adhesion of dust to PV panel surfaces under condensation. Energy 2022; 261: 125255. doi:10.1016/j.energy.2022.125255 Shakeel, MR, Mokheimer, EMA. A techno-economic evaluation of utility scale solar power generation. Energy 2022; 261: 125170. doi:10.1016/j.energy.2022.125170 Chakar, J, Pavlov, M, Bonnassieux, Y, Badosa, J. Determining solar cell parameters and degradation rates from power production data. Energy Conversion and Management 2022; 15: 100270. doi:10.1016/j.ecmx.2022.100270 Gnetchejo, PJ, Ndjakomo Essiane, S, Dadjé, A, Mbadjoun Wapet, D, Ele, P. Optimal design of the modelling parameters of photovoltaic modules and array through metaheuristic with Secant method. Energy Conversion and Management 2022; 15: 100273. doi:10.1016/j.ecmx.2022.100273 Reddy, A, Narayana, KVL. Investigation of a social group assisted differential evolution for the optimal PV parameter extraction of standard and modified diode models. Energy Conversion and Management 2022; 268: 115955. doi:10.1016/j.enconman.2022.115955 Yousri, D, Fathy, A, El-Saadany, EF. Four square sudoku approach for alleviating shading effect on total-cross-tied PV array. Energy Conversion and Management 2022; 269: 116105. doi:10.1016/j.enconman.2022.116105 Giri, NC, Mohanty, RC. Agrivoltaic system: Experimental analysis for enhancing land productivity and revenue of farmers. Energy for Sustainable Development 2022; 70: 54–61. doi:10.1016/j.esd.2022.07.003 Vineesh, V, Bhattacharya, J. Comparing hut-shaped-east–west array for fixed photovoltaic panels against conventional equator facing parallel rows for power output per unit field area. Energy for Sustainable Development 2022; 70: 225–238. doi:10.1016/j.esd.2022.07.019 Hong, YY, Pula, RA. Methods of photovoltaic fault detection and classification: A review. Energy Reports 2022; 8: 5898–5929. doi:10.1016/j.egyr.2022.04.043 Yuan, H, Ye, H, Chen, Y, Deng, W. Research on the optimal configuration of photovoltaic and energy storage in rural microgrid. Energy Reports 2022; 8: 1285–1293. doi:10.1016/j.egyr.2022.08.115 Zhang, C, Zhang, M. Wavelet-based neural network with genetic algorithm optimization for generation prediction of PV plants. Energy Reports 2022; 8: 10976–10990. doi:10.1016/j.egyr.2022.08.176 Asadpour, R, Alam, MA. Worldwide lifetime prediction of c-Si modules due to finger corrosion: A phenomenological approach. IEEE Journal of Photovoltaics 2022; 12(5): 1211–1218. doi:10.1109/JPHOTOV.2022.3183384 Bosco, N. Turn your half-cut cells for a stronger module. IEEE Journal of Photovoltaics 2022; 12(5): 1149–1153. doi:10.1109/JPHOTOV.2022.3192118 Guerra, MR, De la Parra Laita, I, Solano, MG, Pascual, J. In-field energy performance of solar PV module made of UMG silicon. IEEE Journal of Photovoltaics 2022; 12(5): 1109–1115. doi:10.1109/JPHOTOV.2022.3181499 Law, AM, Bukhari, F, Jones, LO, Isherwood, PJM, Walls, JM. Multilayer antireflection coatings for cover glass on silicon solar modules. IEEE Journal of Photovoltaics 2022; 12(5): 1205–1210. doi:10.1109/JPHOTOV.2022.3189327 Zhang, JN, Guo, LL, Ye, J. Cyber-attack detection for photovoltaic farms based on power-electronics-enabled harmonic state space modeling. IEEE Transactions on Smart Grid 2022; 13(5): 3929–3942. doi:10.1109/TSG.2021.3121009 Han, JY, Vohnicky, P. Estimation of global and diffuse horizontal irradiance by machine learning techniques based on variables from the Heliosat model. Journal of Cleaner Production 2022; 371: 133696. doi:10.1016/j.jclepro.2022.133696 Adar, M, Najih, Y, Chebak, A, Mabrouki, M, Bennouna, A. Performance degradation assessment of the three silicon PV technologies. Progress in Photovoltaics: Research and Applications 2022; 30(10): 1149–1165. doi:10.1002/pip.3532 Alcañiz, A, Nikam, MM, Snow, Y, Isabella, O, Ziar, H. Photovoltaic system monitoring and fault detection using peer systems. Progress in Photovoltaics: Research and Applications 2022; 30(9): 1072–1086. doi:10.1002/pip.3558 Beaucarne, G, Eder, G, Jadot, E, Voronko, Y, Mühleisen, W. Repair and preventive maintenance of photovoltaic modules with degrading backsheets using flowable silicone sealant. Progress in Photovoltaics: Research and Applications 2022; 30(8): 1045–1053. doi:10.1002/pip.3492 Jordan, DC, Anderson, K, Perry, K, et al. Photovoltaic fleet degradation insights. Progress in Photovoltaics: Research and Applications 2022; 30(10): 1166–1175. doi:10.1002/pip.3566 Khalifa, SA, Mastrorocco, BV, Au, DD, et al. Dynamic material flow analysis of silicon photovoltaic modules to support a circular economy transition. Progress in Photovoltaics: Research and Applications 2022; 30(7): 784–805. doi:10.1002/pip.3554 Kyranaki, N, Smith, A, Yendall, K, et al. Damp-heat induced degradation in photovoltaic modules manufactured with passivated emitter and rear contact solar cells. Progress in Photovoltaics: Research and Applications 2022; 30(9): 1061–1071. doi:10.1002/pip.3556 Livera, A, Theristis, M, Micheli, L, Stein, JS, Georghiou, GE. Failure diagnosis and trend-based performance losses routines for the detection and classification of incidents in large-scale photovoltaic systems. Progress in Photovoltaics: Research and Applications 2022; 30(8): 921–937. doi:10.1002/pip.3578 Smith, S, Perry, L, Watson, S, et al. Transparent backsheets for bifacial photovoltaic (PV) modules: Material characterization and accelerated laboratory testing. Progress in Photovoltaics: Research and Applications 2022; 30(8): 959–969. doi:10.1002/pip.3494 Sulas-Kern, DB, Owen-Bellini, M, Ndione, P, et al. Electrochemical degradation modes in bifacial silicon photovoltaic modules. Progress in Photovoltaics: Research and Applications 2022; 30(8): 948–958. doi:10.1002/pip.3530 Tummalieh, A, Beinert, AJ, Reichel, C, Mittag, M, Neuhaus, H. Holistic design improvement of the PV module frame: mechanical, optoelectrical, cost, and life cycle analysis. Progress in Photovoltaics: Research and Applications 2022; 30(8): 1012–1022. doi:10.1002/pip.3533 Lu, K, Zhao, B, Xu, C, Li, X, Pei, G. A full-spectrum synergetic management strategy for passive cooling of solar cells. Solar Energy Materials and Solar Cells 2022; 245: 111860. doi:10.1016/j.solmat.2022.111860 Pinto, CL, Cornago, I, Buceta, A, Zugasti, E, Bengoechea, J. Random subwavelength structures on glass to improve photovoltaic module performance. Solar Energy Materials and Solar Cells 2022; 246: 111935. doi:10.1016/j.solmat.2022.111935 Elizabeth Michael, N, Hasan, S, al-Durra, A, Mishra, M. Short-term solar irradiance forecasting based on a novel bayesian optimized deep long short-term memory neural network. Applied Energy 2022; 324: 119727. doi:10.1016/j.apenergy.2022.119727 Jeong, K, An, J, Hong, T, Lee, J, Jeong, Y. Life-cycle economic assessment for establishing the optimal government solar subsidy program in South Korea. Energy and Buildings 2022; 272: 112342. doi:10.1016/j.enbuild.2022.112342 Gao, X, Zhou, S. Solar adoption inequality in the U.S.: Trend, magnitude, and solar justice policies. Energy Policy 2022; 169: 113163. doi:10.1016/j.enpol.2022.113163 Xu, X, Cui, X, Chen, X, Zhou, Y. Impact of government subsidies on the innovation performance of the photovoltaic industry: Based on the moderating effect of carbon trading prices. Energy Policy 2022; 170: 113216. doi:10.1016/j.enpol.2022.113216 Rabaia, MKH, Semeraro, C, Olabi, AG. Recent progress towards photovoltaics' circular economy. Journal of Cleaner Production 2022; 373: 133864. doi:10.1016/j.jclepro.2022.133864 Zante, G, Marin Rivera, R, Hartley, JM, Abbott, AP. Efficient recycling of metals from solar cells using catalytic etchants. Journal of Cleaner Production 2022; 370: 133552. doi:10.1016/j.jclepro.2022.133552 Zhang, ZY, Zheng, T, Zhuang, YX, et al. Recovery and purification of metallurgical silicon from waste silicon slag by blowing refining. Journal of Cleaner Production 2022; 371: 133655. doi:10.1016/j.jclepro.2022.133655 Wai, S, Ota, Y, Nishioka, K. Forecasting solar-to-hydrogen and solar-to-methane energy conversion efficiency using Si and IMM PV-modules: A case-study in Japan. Journal of Power Sources 2022; 546: 231991. doi:10.1016/j.jpowsour.2022.231991 Van der Heide, A, Tous, L, Wambach, K, Poortmans, J, Clyncke, J, Voroshazi, E. Towards a successful re-use of decommissioned photovoltaic modules. Progress in Photovoltaics: Research and Applications 2022; 30(8): 910–920. doi:10.1002/pip.3490" @default.
- W4308584023 created "2022-11-12" @default.
- W4308584023 creator A5060539222 @default.
- W4308584023 date "2022-11-08" @default.
- W4308584023 modified "2023-10-16" @default.
- W4308584023 title "Photovoltaics literature survey (no. 178)" @default.
- W4308584023 doi "https://doi.org/10.1002/pip.3639" @default.
- W4308584023 hasPublicationYear "2022" @default.
- W4308584023 type Work @default.
- W4308584023 citedByCount "1" @default.
- W4308584023 countsByYear W43085840232023 @default.
- W4308584023 crossrefType "journal-article" @default.
- W4308584023 hasAuthorship W4308584023A5060539222 @default.
- W4308584023 hasBestOaLocation W43085840231 @default.
- W4308584023 hasConcept C119599485 @default.
- W4308584023 hasConcept C127413603 @default.
- W4308584023 hasConcept C148383697 @default.
- W4308584023 hasConcept C205649164 @default.
- W4308584023 hasConcept C41291067 @default.
- W4308584023 hasConcept C542589376 @default.
- W4308584023 hasConceptScore W4308584023C119599485 @default.
- W4308584023 hasConceptScore W4308584023C127413603 @default.
- W4308584023 hasConceptScore W4308584023C148383697 @default.
- W4308584023 hasConceptScore W4308584023C205649164 @default.
- W4308584023 hasConceptScore W4308584023C41291067 @default.
- W4308584023 hasConceptScore W4308584023C542589376 @default.
- W4308584023 hasIssue "12" @default.
- W4308584023 hasLocation W43085840231 @default.
- W4308584023 hasOpenAccess W4308584023 @default.
- W4308584023 hasPrimaryLocation W43085840231 @default.
- W4308584023 hasRelatedWork W1493144296 @default.
- W4308584023 hasRelatedWork W172826525 @default.
- W4308584023 hasRelatedWork W2111287004 @default.
- W4308584023 hasRelatedWork W2117123552 @default.
- W4308584023 hasRelatedWork W2740431185 @default.
- W4308584023 hasRelatedWork W2885771654 @default.
- W4308584023 hasRelatedWork W3147182199 @default.
- W4308584023 hasRelatedWork W394760994 @default.
- W4308584023 hasRelatedWork W4249825736 @default.
- W4308584023 hasRelatedWork W4292373487 @default.
- W4308584023 hasVolume "30" @default.
- W4308584023 isParatext "false" @default.
- W4308584023 isRetracted "false" @default.
- W4308584023 workType "article" @default.