Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308585009> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4308585009 abstract "This thesis motivates and examines the use of methods from topological data analysis in detecting and analysing topological features relevant to models from sta-tistical physics and particle physics.In statistical physics, we use persistent homology as an observable of three dif-ferent variants of the two-dimensional XY model in order to identify relevant topo-logical features and study their relation to the phase transitions undergone by each model. We examine models with the classical XY action, a topological lattice action, and an action with an additional nematic term. In particular, we introduce a new way of computing the persistent homology of lattice spin model configurations and demonstrate its use in detecting topological defects called vortices. By considering the fluctuations in the output of logistic regression and k-nearest neighbours mod-els trained on persistence images, we develop a methodology to extract estimates of the critical temperature and the critical exponent of the correlation length. We put particular emphasis on finite-size scaling behaviour and producing estimates with quantifiable error. For each model we successfully identify its phase transition(s) and are able to get an accurate determination of the critical temperatures and critical exponents of the correlation length.In particle physics, we investigate the use of persistent homology as a means to detect and quantitatively describe center vortices in SU(2) lattice gauge theory in a gauge-invariant manner. The sensitivity of our method to vortices in the deconfined phase is confirmed by using twisted boundary conditions which inspires the definition of a new phase indicator for the deconfinement phase transition. We also construct a phase indicator without reference to twisted boundary conditions using a k-nearest neighbours classifier. Finite-size scaling analyses of both persistence-based indicators yield accurate estimates of the critical β and critical exponent of correlation length for the deconfinement phase transition. We also use persistent homology to study the stability of vortices under gradient flow and the classification of different vortex surface geometries." @default.
- W4308585009 created "2022-11-12" @default.
- W4308585009 creator A5067133501 @default.
- W4308585009 date "2022-11-08" @default.
- W4308585009 modified "2023-10-18" @default.
- W4308585009 title "Applications of Topological Data Analysis to Statistical Physics and Quantum Field Theories" @default.
- W4308585009 doi "https://doi.org/10.23889/suthesis.61816" @default.
- W4308585009 hasPublicationYear "2022" @default.
- W4308585009 type Work @default.
- W4308585009 citedByCount "0" @default.
- W4308585009 crossrefType "dissertation" @default.
- W4308585009 hasAuthorship W4308585009A5067133501 @default.
- W4308585009 hasBestOaLocation W43085850091 @default.
- W4308585009 hasConcept C121332964 @default.
- W4308585009 hasConcept C121864883 @default.
- W4308585009 hasConcept C138817895 @default.
- W4308585009 hasConcept C140820882 @default.
- W4308585009 hasConcept C149288129 @default.
- W4308585009 hasConcept C164154869 @default.
- W4308585009 hasConcept C181830111 @default.
- W4308585009 hasConcept C190470478 @default.
- W4308585009 hasConcept C194807282 @default.
- W4308585009 hasConcept C24890656 @default.
- W4308585009 hasConcept C2524010 @default.
- W4308585009 hasConcept C2781204021 @default.
- W4308585009 hasConcept C32848918 @default.
- W4308585009 hasConcept C33332235 @default.
- W4308585009 hasConcept C33923547 @default.
- W4308585009 hasConcept C45646460 @default.
- W4308585009 hasConcept C62520636 @default.
- W4308585009 hasConcept C84114770 @default.
- W4308585009 hasConcept C97355855 @default.
- W4308585009 hasConcept C99844830 @default.
- W4308585009 hasConceptScore W4308585009C121332964 @default.
- W4308585009 hasConceptScore W4308585009C121864883 @default.
- W4308585009 hasConceptScore W4308585009C138817895 @default.
- W4308585009 hasConceptScore W4308585009C140820882 @default.
- W4308585009 hasConceptScore W4308585009C149288129 @default.
- W4308585009 hasConceptScore W4308585009C164154869 @default.
- W4308585009 hasConceptScore W4308585009C181830111 @default.
- W4308585009 hasConceptScore W4308585009C190470478 @default.
- W4308585009 hasConceptScore W4308585009C194807282 @default.
- W4308585009 hasConceptScore W4308585009C24890656 @default.
- W4308585009 hasConceptScore W4308585009C2524010 @default.
- W4308585009 hasConceptScore W4308585009C2781204021 @default.
- W4308585009 hasConceptScore W4308585009C32848918 @default.
- W4308585009 hasConceptScore W4308585009C33332235 @default.
- W4308585009 hasConceptScore W4308585009C33923547 @default.
- W4308585009 hasConceptScore W4308585009C45646460 @default.
- W4308585009 hasConceptScore W4308585009C62520636 @default.
- W4308585009 hasConceptScore W4308585009C84114770 @default.
- W4308585009 hasConceptScore W4308585009C97355855 @default.
- W4308585009 hasConceptScore W4308585009C99844830 @default.
- W4308585009 hasLocation W43085850091 @default.
- W4308585009 hasOpenAccess W4308585009 @default.
- W4308585009 hasPrimaryLocation W43085850091 @default.
- W4308585009 hasRelatedWork W16992684 @default.
- W4308585009 hasRelatedWork W1980717516 @default.
- W4308585009 hasRelatedWork W2007973453 @default.
- W4308585009 hasRelatedWork W2030193060 @default.
- W4308585009 hasRelatedWork W2057750433 @default.
- W4308585009 hasRelatedWork W2137401909 @default.
- W4308585009 hasRelatedWork W3098211174 @default.
- W4308585009 hasRelatedWork W3101766191 @default.
- W4308585009 hasRelatedWork W4299019851 @default.
- W4308585009 hasRelatedWork W2087711499 @default.
- W4308585009 isParatext "false" @default.
- W4308585009 isRetracted "false" @default.
- W4308585009 workType "dissertation" @default.