Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308592509> ?p ?o ?g. }
- W4308592509 abstract "Background: Ovarian cancer (OC) is the most troubling malignant tumor of the female reproductive system. It has a low early diagnosis rate and a high tumor recurrence rate after treatment. Immunogenic cell death (ICD) is a unique form of regulated cell death that can activate the adaptive immune system through the release of DAMPs and cytokines in immunocompromised hosts and establish long-term immunologic memory. Therefore, this study aims to explore the prognostic value and underlying mechanisms of ICD-related genes in OC on the basis of characteristics. Methods: The gene expression profiles and related clinical information of OC were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. ICD-related genes were collected from the Genecards database. ICD-related prognostic genes were obtained by intersecting ICD-related genes with the OC prognostic-related genes that were analyzed in the TCGA database. Functional enrichment, genetic mutation, and immune infiltration correlation analyses were further performed to identify underlying mechanisms. Subsequently, we developed a TCGA cohort-based prognostic risk model that included a nine-gene signature through univariate and multivariate Cox regression and LASSO regression analyses. Meanwhile, external validation was performed on two sets of GEO cohorts and the TCGA training cohort for three other common tumors in women. In addition, a nomogram was established by integrating clinicopathological features and ICD-related gene signature to predict survival probability. Finally, functional enrichment and immune infiltration analyses were performed on the two risk subgroups. Results: By utilizing nine genes (ERBB2, RB1, CCR7, CD38, IFNB1, ANXA2, CXCL9, SLC9A1, and SLAMF7), we constructed an ICD-related prognostic signature. Subsequently, patients were subdivided into high- and low-risk subgroups in accordance with the median value of the risk score. In multivariate Cox regression analyses, risk score was an independent prognostic factor (hazard ratio = 2.783; p < 0.01). In the TCGA training cohort and the two GEO validation cohorts, patients with high-risk scores had worse prognosis than those with low-risk scores (p < 0.05). The time-dependent receiver operating characteristic curve further validated the prognostic power of the gene signature. Finally, gene set enrichment analysis indicated that multiple oncological pathways were significantly enriched in the high-risk subgroup. By contrast, the low-risk subgroup was strongly related to the immune-related signaling pathways. Immune infiltration analysis further illustrated that most immune cells showed higher levels of infiltration in the low-risk subgroup than in the high-risk subgroup. Conclusion: We constructed a novel ICD-related gene model for forecasting the prognosis and immune infiltration status of patients with OC. In the future, new ICD-related genes may provide novel potential targets for the therapeutic intervention of OC." @default.
- W4308592509 created "2022-11-12" @default.
- W4308592509 creator A5028096319 @default.
- W4308592509 creator A5037677450 @default.
- W4308592509 creator A5042538052 @default.
- W4308592509 creator A5052588320 @default.
- W4308592509 creator A5053405826 @default.
- W4308592509 creator A5053763641 @default.
- W4308592509 date "2022-11-08" @default.
- W4308592509 modified "2023-10-03" @default.
- W4308592509 title "Immunogenic cell death-related gene landscape predicts the overall survival and immune infiltration status of ovarian cancer" @default.
- W4308592509 cites W1966107523 @default.
- W4308592509 cites W1983919608 @default.
- W4308592509 cites W1984562597 @default.
- W4308592509 cites W1986986419 @default.
- W4308592509 cites W2030689322 @default.
- W4308592509 cites W2044268514 @default.
- W4308592509 cites W2046451707 @default.
- W4308592509 cites W2053627244 @default.
- W4308592509 cites W2114843025 @default.
- W4308592509 cites W2122510983 @default.
- W4308592509 cites W2123895023 @default.
- W4308592509 cites W2130164640 @default.
- W4308592509 cites W2130410032 @default.
- W4308592509 cites W2235523093 @default.
- W4308592509 cites W2466335605 @default.
- W4308592509 cites W2606675097 @default.
- W4308592509 cites W2607211817 @default.
- W4308592509 cites W2736638081 @default.
- W4308592509 cites W2741563503 @default.
- W4308592509 cites W2761175808 @default.
- W4308592509 cites W2790543400 @default.
- W4308592509 cites W2884332748 @default.
- W4308592509 cites W2914345456 @default.
- W4308592509 cites W2937725692 @default.
- W4308592509 cites W2965817991 @default.
- W4308592509 cites W3011642937 @default.
- W4308592509 cites W3013473869 @default.
- W4308592509 cites W3016001838 @default.
- W4308592509 cites W3016236372 @default.
- W4308592509 cites W3024744974 @default.
- W4308592509 cites W3063858912 @default.
- W4308592509 cites W3081985185 @default.
- W4308592509 cites W3082342132 @default.
- W4308592509 cites W3099624347 @default.
- W4308592509 cites W3107527779 @default.
- W4308592509 cites W3110715203 @default.
- W4308592509 cites W3113214100 @default.
- W4308592509 cites W3113818268 @default.
- W4308592509 cites W3115820434 @default.
- W4308592509 cites W3118861401 @default.
- W4308592509 cites W3133731390 @default.
- W4308592509 cites W3134594280 @default.
- W4308592509 cites W3145955706 @default.
- W4308592509 cites W3169068839 @default.
- W4308592509 cites W3183468926 @default.
- W4308592509 cites W3208249256 @default.
- W4308592509 cites W3210071832 @default.
- W4308592509 cites W3214917405 @default.
- W4308592509 cites W3215442025 @default.
- W4308592509 cites W4206259166 @default.
- W4308592509 cites W4207028462 @default.
- W4308592509 cites W4214731166 @default.
- W4308592509 cites W4226284493 @default.
- W4308592509 cites W4280593636 @default.
- W4308592509 cites W4281396741 @default.
- W4308592509 doi "https://doi.org/10.3389/fgene.2022.1001239" @default.
- W4308592509 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36425071" @default.
- W4308592509 hasPublicationYear "2022" @default.
- W4308592509 type Work @default.
- W4308592509 citedByCount "6" @default.
- W4308592509 countsByYear W43085925092023 @default.
- W4308592509 crossrefType "journal-article" @default.
- W4308592509 hasAuthorship W4308592509A5028096319 @default.
- W4308592509 hasAuthorship W4308592509A5037677450 @default.
- W4308592509 hasAuthorship W4308592509A5042538052 @default.
- W4308592509 hasAuthorship W4308592509A5052588320 @default.
- W4308592509 hasAuthorship W4308592509A5053405826 @default.
- W4308592509 hasAuthorship W4308592509A5053763641 @default.
- W4308592509 hasBestOaLocation W43085925091 @default.
- W4308592509 hasConcept C104317684 @default.
- W4308592509 hasConcept C121608353 @default.
- W4308592509 hasConcept C126322002 @default.
- W4308592509 hasConcept C143998085 @default.
- W4308592509 hasConcept C203014093 @default.
- W4308592509 hasConcept C2780427987 @default.
- W4308592509 hasConcept C34626388 @default.
- W4308592509 hasConcept C50382708 @default.
- W4308592509 hasConcept C54355233 @default.
- W4308592509 hasConcept C71924100 @default.
- W4308592509 hasConcept C86803240 @default.
- W4308592509 hasConcept C8891405 @default.
- W4308592509 hasConceptScore W4308592509C104317684 @default.
- W4308592509 hasConceptScore W4308592509C121608353 @default.
- W4308592509 hasConceptScore W4308592509C126322002 @default.
- W4308592509 hasConceptScore W4308592509C143998085 @default.
- W4308592509 hasConceptScore W4308592509C203014093 @default.
- W4308592509 hasConceptScore W4308592509C2780427987 @default.
- W4308592509 hasConceptScore W4308592509C34626388 @default.
- W4308592509 hasConceptScore W4308592509C50382708 @default.