Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308602012> ?p ?o ?g. }
- W4308602012 endingPage "128638" @default.
- W4308602012 startingPage "128638" @default.
- W4308602012 abstract "The reliability and accuracy of canopy resistance (rc) are crucial for the evapotranspiration (ET) estimation in sparsely vegetated ecosystems, but most studies are still limited to the single-source Penman-Monteith (PM) model. In this study, we coupled three types of rc models (three-way model: Jarvis, JA; two-way model: Kelliher-Leuning, KL; Farias, FA; one-way model: Katerji-Perrier, KP; Massman, MA) to the PM and Shuttleworth-Wallace (SW) models to assess their applicability and stability under single-source and dual-source hypotheses in a maize field in northwest China. The models were calibrated and validated against the observed data from a three-year (2011–2013) field experiment based on genetic algorithms (GA). The results indicated that the rc coupled models optimized by GA greatly alleviated the overestimation of the original PM and SW models with mean absolute error (MAE) decreased by 13.85%-40.77% and determination coefficient (R2) increased by 0.40%-7.37%. The SW-type models achieved overall high performance to simulate ET at a diurnal timescale over the entire crop season compared to the equivalent PM-type models. The three-way JA model including crop, soil and meteorological factors tended to perform more accurately than the other rc models, and the coupled SW-JA model was optimal for predicting maize ET over the entire growing season. The two-way KL model produced lower errors than the FA model, whereas the FA model had the potential to be improved due to the highest R2 with the field-based ET for both PM- and SW- hypotheses. In addition, the sensitivity analysis to environmental variables showed the effect of leaf area index (LAI) and vapor pressure deficit (VPD) was less on ET compared with net radiation (Rn) and soil moisture (θ). This study contributes to the knowledge in the area of actual ET modeling over sparse vegetation, which provides a reference for agricultural and environmental applications." @default.
- W4308602012 created "2022-11-12" @default.
- W4308602012 creator A5004387898 @default.
- W4308602012 creator A5005921691 @default.
- W4308602012 creator A5008171524 @default.
- W4308602012 creator A5014027020 @default.
- W4308602012 creator A5016186535 @default.
- W4308602012 creator A5053347480 @default.
- W4308602012 creator A5059852373 @default.
- W4308602012 creator A5062668689 @default.
- W4308602012 date "2022-11-01" @default.
- W4308602012 modified "2023-10-15" @default.
- W4308602012 title "Modeling maize evapotranspiration using three types of canopy resistance models coupled with single-source and dual-source hypotheses—A comparative study in a semi-humid and drought-prone region" @default.
- W4308602012 cites W1209269186 @default.
- W4308602012 cites W1442102580 @default.
- W4308602012 cites W1499702607 @default.
- W4308602012 cites W1957473253 @default.
- W4308602012 cites W1973197342 @default.
- W4308602012 cites W1973425650 @default.
- W4308602012 cites W1975271713 @default.
- W4308602012 cites W1979444767 @default.
- W4308602012 cites W1991961348 @default.
- W4308602012 cites W1994057099 @default.
- W4308602012 cites W2006351392 @default.
- W4308602012 cites W2014338704 @default.
- W4308602012 cites W2014346504 @default.
- W4308602012 cites W2018669430 @default.
- W4308602012 cites W2030043359 @default.
- W4308602012 cites W2035147677 @default.
- W4308602012 cites W2036582876 @default.
- W4308602012 cites W2047579083 @default.
- W4308602012 cites W2049307993 @default.
- W4308602012 cites W2051439571 @default.
- W4308602012 cites W2052297529 @default.
- W4308602012 cites W2059631183 @default.
- W4308602012 cites W2069313066 @default.
- W4308602012 cites W2070936556 @default.
- W4308602012 cites W2076703604 @default.
- W4308602012 cites W2077295840 @default.
- W4308602012 cites W2089976813 @default.
- W4308602012 cites W2101723742 @default.
- W4308602012 cites W2123925548 @default.
- W4308602012 cites W2130031595 @default.
- W4308602012 cites W2134307851 @default.
- W4308602012 cites W2154060267 @default.
- W4308602012 cites W2154390958 @default.
- W4308602012 cites W2157150010 @default.
- W4308602012 cites W2160284936 @default.
- W4308602012 cites W2160782343 @default.
- W4308602012 cites W2161012322 @default.
- W4308602012 cites W2165919818 @default.
- W4308602012 cites W2290222028 @default.
- W4308602012 cites W2318986135 @default.
- W4308602012 cites W2533233284 @default.
- W4308602012 cites W2553426701 @default.
- W4308602012 cites W2768541578 @default.
- W4308602012 cites W2809373581 @default.
- W4308602012 cites W2884634948 @default.
- W4308602012 cites W2892259691 @default.
- W4308602012 cites W2905969523 @default.
- W4308602012 cites W2944755434 @default.
- W4308602012 cites W2948344478 @default.
- W4308602012 cites W2989219606 @default.
- W4308602012 cites W3057550741 @default.
- W4308602012 cites W3092453021 @default.
- W4308602012 cites W3102275027 @default.
- W4308602012 cites W3129724583 @default.
- W4308602012 cites W3133048413 @default.
- W4308602012 cites W3174058261 @default.
- W4308602012 cites W3197075426 @default.
- W4308602012 cites W3213233919 @default.
- W4308602012 cites W4200499494 @default.
- W4308602012 cites W4224999739 @default.
- W4308602012 doi "https://doi.org/10.1016/j.jhydrol.2022.128638" @default.
- W4308602012 hasPublicationYear "2022" @default.
- W4308602012 type Work @default.
- W4308602012 citedByCount "1" @default.
- W4308602012 crossrefType "journal-article" @default.
- W4308602012 hasAuthorship W4308602012A5004387898 @default.
- W4308602012 hasAuthorship W4308602012A5005921691 @default.
- W4308602012 hasAuthorship W4308602012A5008171524 @default.
- W4308602012 hasAuthorship W4308602012A5014027020 @default.
- W4308602012 hasAuthorship W4308602012A5016186535 @default.
- W4308602012 hasAuthorship W4308602012A5053347480 @default.
- W4308602012 hasAuthorship W4308602012A5059852373 @default.
- W4308602012 hasAuthorship W4308602012A5062668689 @default.
- W4308602012 hasConcept C101000010 @default.
- W4308602012 hasConcept C105795698 @default.
- W4308602012 hasConcept C127313418 @default.
- W4308602012 hasConcept C137660486 @default.
- W4308602012 hasConcept C14331020 @default.
- W4308602012 hasConcept C157517311 @default.
- W4308602012 hasConcept C159390177 @default.
- W4308602012 hasConcept C165838908 @default.
- W4308602012 hasConcept C176783924 @default.
- W4308602012 hasConcept C183688256 @default.
- W4308602012 hasConcept C187320778 @default.
- W4308602012 hasConcept C18903297 @default.