Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308607443> ?p ?o ?g. }
- W4308607443 endingPage "5604" @default.
- W4308607443 startingPage "5577" @default.
- W4308607443 abstract "Abstract. Heat is a naturally occurring, widespread groundwater tracer that can be used to identify flow patterns in groundwater systems. Temperature measurements, being relatively inexpensive and effortless to gather, represent a valuable source of information which can be exploited to reduce uncertainties on groundwater flow, and, for example, support performance assessment studies on waste disposal sites. In a lowland setting, however, hydraulic gradients are typically small, and whether temperature measurements can be used to inform us about catchment-scale groundwater flow remains an open question. For the Neogene Aquifer in Flanders, groundwater flow and solute transport models have been developed in the framework of safety and feasibility studies for the underlying Boom Clay formation as a potential host rock for geological disposal of radioactive waste. However, the simulated fluxes by these models are still subject to large uncertainties as they are typically constrained by hydraulic heads only. In the current study, we use a state-of-the-art 3D steady-state groundwater flow model, calibrated against hydraulic head measurements, to build a 3D transient heat transport model, for assessing the use of heat as an additional state variable, in a lowland setting and at the catchment scale. We therefore use temperature–depth (TD) profiles as additional state variable observations for inverse conditioning. Furthermore, a Holocene paleo-temperature time curve was constructed based on paleo-temperature reconstructions in Europe from several sources in combination with land surface temperature (LST) remotely sensed monthly data from 2001 to 2019 (retrieved from NASA's Moderate Resolution Imaging Spectroradiometer, MODIS). The aim of the research is to understand the mechanisms of heat transport and to characterize the temperature distribution and dynamics in the Neogene Aquifer. The simulation results clearly underline advection/convection and conduction as the major heat transport mechanisms, with a reduced role of advection/convection in zones where flux magnitudes are low, which suggests that temperature is also a useful indicator in a lowland setting. Furthermore, the performed scenarios highlight the important roles of (i) surface hydrological features and withdrawals driving local groundwater flow systems and (ii) the inclusion of subsurface features like faults in the conceptualization and development of hydrogeological investigations. These findings serve as a proxy of the influence of advective transport and barrier/conduit role of faults, particularly for the Rauw fault in this case, and suggest that solutes released from the Boom Clay might be affected in similar ways." @default.
- W4308607443 created "2022-11-13" @default.
- W4308607443 creator A5039395337 @default.
- W4308607443 creator A5056305887 @default.
- W4308607443 creator A5074080839 @default.
- W4308607443 creator A5082165946 @default.
- W4308607443 creator A5086365492 @default.
- W4308607443 date "2022-11-09" @default.
- W4308607443 modified "2023-09-26" @default.
- W4308607443 title "Characterizing groundwater heat transport in a complex lowland aquifer using paleo-temperature reconstruction, satellite data, temperature–depth profiles, and numerical models" @default.
- W4308607443 cites W1531958500 @default.
- W4308607443 cites W1558028886 @default.
- W4308607443 cites W1576774003 @default.
- W4308607443 cites W1602538290 @default.
- W4308607443 cites W1609373860 @default.
- W4308607443 cites W1693802668 @default.
- W4308607443 cites W1786226516 @default.
- W4308607443 cites W1838857989 @default.
- W4308607443 cites W1969599221 @default.
- W4308607443 cites W1971421363 @default.
- W4308607443 cites W1971429875 @default.
- W4308607443 cites W1986100252 @default.
- W4308607443 cites W1993357995 @default.
- W4308607443 cites W2004780418 @default.
- W4308607443 cites W2015504824 @default.
- W4308607443 cites W2018535663 @default.
- W4308607443 cites W2037481926 @default.
- W4308607443 cites W2039352336 @default.
- W4308607443 cites W2039789823 @default.
- W4308607443 cites W2043278879 @default.
- W4308607443 cites W2057035153 @default.
- W4308607443 cites W2057404257 @default.
- W4308607443 cites W2061216632 @default.
- W4308607443 cites W2061292865 @default.
- W4308607443 cites W2062457444 @default.
- W4308607443 cites W2065276098 @default.
- W4308607443 cites W2066753476 @default.
- W4308607443 cites W2067592414 @default.
- W4308607443 cites W2067879701 @default.
- W4308607443 cites W2068570708 @default.
- W4308607443 cites W2074788167 @default.
- W4308607443 cites W2090043090 @default.
- W4308607443 cites W2096809505 @default.
- W4308607443 cites W2098486629 @default.
- W4308607443 cites W2099604203 @default.
- W4308607443 cites W2099929014 @default.
- W4308607443 cites W2102832052 @default.
- W4308607443 cites W2108531121 @default.
- W4308607443 cites W2117227640 @default.
- W4308607443 cites W2120619614 @default.
- W4308607443 cites W2124306732 @default.
- W4308607443 cites W2134435601 @default.
- W4308607443 cites W2139628972 @default.
- W4308607443 cites W2142736733 @default.
- W4308607443 cites W2146904562 @default.
- W4308607443 cites W2149710775 @default.
- W4308607443 cites W2152312062 @default.
- W4308607443 cites W2167913202 @default.
- W4308607443 cites W2172176129 @default.
- W4308607443 cites W2289190183 @default.
- W4308607443 cites W2321037261 @default.
- W4308607443 cites W2522335457 @default.
- W4308607443 cites W2529656822 @default.
- W4308607443 cites W2551087333 @default.
- W4308607443 cites W2581205205 @default.
- W4308607443 cites W2614464134 @default.
- W4308607443 cites W2732452495 @default.
- W4308607443 cites W2742937774 @default.
- W4308607443 cites W2745516023 @default.
- W4308607443 cites W2759564565 @default.
- W4308607443 cites W2762611015 @default.
- W4308607443 cites W2772445737 @default.
- W4308607443 cites W2786514163 @default.
- W4308607443 cites W2811161193 @default.
- W4308607443 cites W2815641145 @default.
- W4308607443 cites W2892355837 @default.
- W4308607443 cites W2894768780 @default.
- W4308607443 cites W2902452406 @default.
- W4308607443 cites W2915953143 @default.
- W4308607443 cites W2944119190 @default.
- W4308607443 cites W2955540732 @default.
- W4308607443 cites W3020939890 @default.
- W4308607443 cites W3034130551 @default.
- W4308607443 cites W3041189570 @default.
- W4308607443 cites W3083873674 @default.
- W4308607443 cites W3216852607 @default.
- W4308607443 cites W6003059 @default.
- W4308607443 cites W999392158 @default.
- W4308607443 doi "https://doi.org/10.5194/hess-26-5577-2022" @default.
- W4308607443 hasPublicationYear "2022" @default.
- W4308607443 type Work @default.
- W4308607443 citedByCount "0" @default.
- W4308607443 crossrefType "journal-article" @default.
- W4308607443 hasAuthorship W4308607443A5039395337 @default.
- W4308607443 hasAuthorship W4308607443A5056305887 @default.
- W4308607443 hasAuthorship W4308607443A5074080839 @default.
- W4308607443 hasAuthorship W4308607443A5082165946 @default.
- W4308607443 hasAuthorship W4308607443A5086365492 @default.