Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308607613> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4308607613 endingPage "104658" @default.
- W4308607613 startingPage "104658" @default.
- W4308607613 abstract "One of the most common pathologies in exposed brick facades is efflorescence, which, although they often have a similar appearance, their effects and way of solving them can range from a one-off cleaning to a repair that involves adding or replacing the material. Therefore, the novel goal of this work is to verify whether it is possible to automate this task of distinguishing what type of intervention each brick needs. To do this, the methodology followed focuses on proposing, training and validating a deep convolutional neural network with the real-time end-to-end method that simultaneously predicts multiple bounding boxes and class probabilities for those boxes. For this, images of 765 building facades will be used, of which 392 were selected, proceeding to label 4704 bricks, resulting in that the model achieved a mAP maximum at epoch 100 with 0.894, which is therefore of interest for the creation of intervention maps. • A deep learning strategy is developed to detect ways to repair façade bricks. • The deep learning-based model was trained and reached a mAP of 0.894 at epoch 100. • The model provides valuable guidance on the repair facing bricks with efflorescent." @default.
- W4308607613 created "2022-11-13" @default.
- W4308607613 creator A5011649465 @default.
- W4308607613 creator A5038425861 @default.
- W4308607613 creator A5055522159 @default.
- W4308607613 creator A5058014060 @default.
- W4308607613 date "2023-01-01" @default.
- W4308607613 modified "2023-10-03" @default.
- W4308607613 title "Deep learning model for automated detection of efflorescence and its possible treatment in images of brick facades" @default.
- W4308607613 cites W1498436455 @default.
- W4308607613 cites W1571934266 @default.
- W4308607613 cites W1995341919 @default.
- W4308607613 cites W2040870580 @default.
- W4308607613 cites W2059148040 @default.
- W4308607613 cites W2064947362 @default.
- W4308607613 cites W2109255472 @default.
- W4308607613 cites W2112796928 @default.
- W4308607613 cites W2117539524 @default.
- W4308607613 cites W2183182206 @default.
- W4308607613 cites W2501369945 @default.
- W4308607613 cites W2533800772 @default.
- W4308607613 cites W2538244214 @default.
- W4308607613 cites W2760432156 @default.
- W4308607613 cites W2886848602 @default.
- W4308607613 cites W2919115771 @default.
- W4308607613 cites W2921336173 @default.
- W4308607613 cites W2965127303 @default.
- W4308607613 cites W3004442222 @default.
- W4308607613 cites W3007943565 @default.
- W4308607613 cites W3106250896 @default.
- W4308607613 cites W3216623900 @default.
- W4308607613 cites W4210598935 @default.
- W4308607613 doi "https://doi.org/10.1016/j.autcon.2022.104658" @default.
- W4308607613 hasPublicationYear "2023" @default.
- W4308607613 type Work @default.
- W4308607613 citedByCount "3" @default.
- W4308607613 countsByYear W43086076132023 @default.
- W4308607613 crossrefType "journal-article" @default.
- W4308607613 hasAuthorship W4308607613A5011649465 @default.
- W4308607613 hasAuthorship W4308607613A5038425861 @default.
- W4308607613 hasAuthorship W4308607613A5055522159 @default.
- W4308607613 hasAuthorship W4308607613A5058014060 @default.
- W4308607613 hasConcept C108583219 @default.
- W4308607613 hasConcept C127313418 @default.
- W4308607613 hasConcept C127413603 @default.
- W4308607613 hasConcept C147176958 @default.
- W4308607613 hasConcept C150846664 @default.
- W4308607613 hasConcept C154226666 @default.
- W4308607613 hasConcept C154945302 @default.
- W4308607613 hasConcept C199289684 @default.
- W4308607613 hasConcept C201995342 @default.
- W4308607613 hasConcept C2780317896 @default.
- W4308607613 hasConcept C2780451532 @default.
- W4308607613 hasConcept C31972630 @default.
- W4308607613 hasConcept C41008148 @default.
- W4308607613 hasConcept C50644808 @default.
- W4308607613 hasConcept C63584917 @default.
- W4308607613 hasConcept C81363708 @default.
- W4308607613 hasConcept C91464221 @default.
- W4308607613 hasConceptScore W4308607613C108583219 @default.
- W4308607613 hasConceptScore W4308607613C127313418 @default.
- W4308607613 hasConceptScore W4308607613C127413603 @default.
- W4308607613 hasConceptScore W4308607613C147176958 @default.
- W4308607613 hasConceptScore W4308607613C150846664 @default.
- W4308607613 hasConceptScore W4308607613C154226666 @default.
- W4308607613 hasConceptScore W4308607613C154945302 @default.
- W4308607613 hasConceptScore W4308607613C199289684 @default.
- W4308607613 hasConceptScore W4308607613C201995342 @default.
- W4308607613 hasConceptScore W4308607613C2780317896 @default.
- W4308607613 hasConceptScore W4308607613C2780451532 @default.
- W4308607613 hasConceptScore W4308607613C31972630 @default.
- W4308607613 hasConceptScore W4308607613C41008148 @default.
- W4308607613 hasConceptScore W4308607613C50644808 @default.
- W4308607613 hasConceptScore W4308607613C63584917 @default.
- W4308607613 hasConceptScore W4308607613C81363708 @default.
- W4308607613 hasConceptScore W4308607613C91464221 @default.
- W4308607613 hasLocation W43086076131 @default.
- W4308607613 hasOpenAccess W4308607613 @default.
- W4308607613 hasPrimaryLocation W43086076131 @default.
- W4308607613 hasRelatedWork W2731899572 @default.
- W4308607613 hasRelatedWork W2769769732 @default.
- W4308607613 hasRelatedWork W2999805992 @default.
- W4308607613 hasRelatedWork W3116150086 @default.
- W4308607613 hasRelatedWork W3133861977 @default.
- W4308607613 hasRelatedWork W3166467183 @default.
- W4308607613 hasRelatedWork W3184130799 @default.
- W4308607613 hasRelatedWork W3194889229 @default.
- W4308607613 hasRelatedWork W3214521593 @default.
- W4308607613 hasRelatedWork W4200173597 @default.
- W4308607613 hasVolume "145" @default.
- W4308607613 isParatext "false" @default.
- W4308607613 isRetracted "false" @default.
- W4308607613 workType "article" @default.