Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308621182> ?p ?o ?g. }
- W4308621182 endingPage "111213" @default.
- W4308621182 startingPage "111213" @default.
- W4308621182 abstract "By the expansion of production from source-related unconventional petroleum resources, accurate approximation of Total Organic Carbon (TOC) through well logs has become progressively important. Accordingly, recent studies have mainly focused on increasing the precision of TOC estimation by using different types of AI techniques and/or optimizing algorithms. Along with utilizing these approaches, this study emphasized on removing an unaddressed source of error inherited from lithological heterogeneity with the same goal. Like organic matter quantity, lithological variations within a source interval also induce well log responses, which may interfere with the training process of Artificial Intelligence (AI) techniques. In the present research, the effect of lithological variations on the performance of TOC estimators was evaluated by employing Adaptive Neuro Fuzzy Inference System (ANFIS) and Multilayer Perceptron network (MLP). Firstly, ANFIS and MLP models were constructed and trained using a database containing different lithologies (original models). Then, a new methodology was developed based on modeling the relationship between log data and TOC values for each type of lithology (litho-based method). The result showed that the litho-based method estimates more reliable and accurate TOC values, proving the adverse effect of lithological variations on the original models. Furthermore, the litho-based ANFIS models provide the most promising results. Since metaheuristic algorithms are usually employed to optimize AI techniques, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) were also implemented into the original models (hybrid models). Accuracy of TOC values estimated by the hybrid models is slightly higher than those derived from the original models. However, these hybrid approaches are not as efficient as the litho-based method. Applicability of the proposed approach was guaranteed by performing it over Pabdeh source rocks in a well of SW Iran. Based on its high efficiency, the newly developed litho-based method can be used as a powerful tool to reliably evaluate unconventional hydrocarbon resources, as well as the potential of the conventional petroleum sources. Moreover, it can be utilized, instead of/along with traditional optimization approaches, to approximate other geochemical factors as well as petrophysical parameters from log data." @default.
- W4308621182 created "2022-11-13" @default.
- W4308621182 creator A5001359992 @default.
- W4308621182 creator A5018070526 @default.
- W4308621182 date "2023-01-01" @default.
- W4308621182 modified "2023-09-29" @default.
- W4308621182 title "Effect of lithological variations on the performance of artificial intelligence techniques for estimating total organic carbon through well logs" @default.
- W4308621182 cites W1968313366 @default.
- W4308621182 cites W1968716244 @default.
- W4308621182 cites W1972936626 @default.
- W4308621182 cites W1977177161 @default.
- W4308621182 cites W1983420365 @default.
- W4308621182 cites W1987597933 @default.
- W4308621182 cites W1992176519 @default.
- W4308621182 cites W1995961111 @default.
- W4308621182 cites W1998100610 @default.
- W4308621182 cites W2001129580 @default.
- W4308621182 cites W2008467806 @default.
- W4308621182 cites W2010650693 @default.
- W4308621182 cites W2019207321 @default.
- W4308621182 cites W2024392312 @default.
- W4308621182 cites W2030821681 @default.
- W4308621182 cites W2032658593 @default.
- W4308621182 cites W2036319892 @default.
- W4308621182 cites W2043074624 @default.
- W4308621182 cites W2049545938 @default.
- W4308621182 cites W2054225764 @default.
- W4308621182 cites W2057727992 @default.
- W4308621182 cites W2057814586 @default.
- W4308621182 cites W2058508209 @default.
- W4308621182 cites W2067165843 @default.
- W4308621182 cites W2077537188 @default.
- W4308621182 cites W2081749411 @default.
- W4308621182 cites W2085730657 @default.
- W4308621182 cites W2131047005 @default.
- W4308621182 cites W2141800415 @default.
- W4308621182 cites W2159371584 @default.
- W4308621182 cites W2522985950 @default.
- W4308621182 cites W2567792858 @default.
- W4308621182 cites W2615467640 @default.
- W4308621182 cites W2621318462 @default.
- W4308621182 cites W2633139931 @default.
- W4308621182 cites W2744067608 @default.
- W4308621182 cites W2751983004 @default.
- W4308621182 cites W2775488500 @default.
- W4308621182 cites W2799905378 @default.
- W4308621182 cites W2805794557 @default.
- W4308621182 cites W2902532267 @default.
- W4308621182 cites W2914046321 @default.
- W4308621182 cites W2914545661 @default.
- W4308621182 cites W2916018064 @default.
- W4308621182 cites W2964156851 @default.
- W4308621182 cites W2974448108 @default.
- W4308621182 cites W3105322534 @default.
- W4308621182 cites W3115358103 @default.
- W4308621182 cites W3148895670 @default.
- W4308621182 cites W3164252737 @default.
- W4308621182 cites W3166793137 @default.
- W4308621182 cites W3169568125 @default.
- W4308621182 cites W3196322538 @default.
- W4308621182 cites W3204947922 @default.
- W4308621182 cites W3209022626 @default.
- W4308621182 cites W3211852113 @default.
- W4308621182 cites W3212464643 @default.
- W4308621182 cites W4280501913 @default.
- W4308621182 cites W4289443815 @default.
- W4308621182 doi "https://doi.org/10.1016/j.petrol.2022.111213" @default.
- W4308621182 hasPublicationYear "2023" @default.
- W4308621182 type Work @default.
- W4308621182 citedByCount "2" @default.
- W4308621182 countsByYear W43086211822023 @default.
- W4308621182 crossrefType "journal-article" @default.
- W4308621182 hasAuthorship W4308621182A5001359992 @default.
- W4308621182 hasAuthorship W4308621182A5018070526 @default.
- W4308621182 hasConcept C105795698 @default.
- W4308621182 hasConcept C119857082 @default.
- W4308621182 hasConcept C124101348 @default.
- W4308621182 hasConcept C140073362 @default.
- W4308621182 hasConcept C154945302 @default.
- W4308621182 hasConcept C185429906 @default.
- W4308621182 hasConcept C186108316 @default.
- W4308621182 hasConcept C195975749 @default.
- W4308621182 hasConcept C33923547 @default.
- W4308621182 hasConcept C41008148 @default.
- W4308621182 hasConcept C50644808 @default.
- W4308621182 hasConcept C58166 @default.
- W4308621182 hasConcept C85617194 @default.
- W4308621182 hasConcept C8880873 @default.
- W4308621182 hasConceptScore W4308621182C105795698 @default.
- W4308621182 hasConceptScore W4308621182C119857082 @default.
- W4308621182 hasConceptScore W4308621182C124101348 @default.
- W4308621182 hasConceptScore W4308621182C140073362 @default.
- W4308621182 hasConceptScore W4308621182C154945302 @default.
- W4308621182 hasConceptScore W4308621182C185429906 @default.
- W4308621182 hasConceptScore W4308621182C186108316 @default.
- W4308621182 hasConceptScore W4308621182C195975749 @default.
- W4308621182 hasConceptScore W4308621182C33923547 @default.
- W4308621182 hasConceptScore W4308621182C41008148 @default.