Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308641503> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4308641503 abstract "Termination analyses investigate the termination behavior of programs, intending to detect nontermination, which is known to cause a variety of program bugs (e.g. hanging programs, denial-of-service vulnerabilities). Beyond formal approaches, various attempts have been made to estimate the termination behavior of programs using neural networks. However, the majority of these approaches continue to rely on formal methods to provide strong soundness guarantees and consequently suffer from similar limitations. In this paper, we move away from formal methods and embrace the stochastic nature of machine learning models. Instead of aiming for rigorous guarantees that can be interpreted by solvers, our objective is to provide an estimation of a program's termination behavior and of the likely reason for nontermination (when applicable) that a programmer can use for debugging purposes. Compared to previous approaches using neural networks for program termination, we also take advantage of the graph representation of programs by employing Graph Neural Networks. To further assist programmers in understanding and debugging nontermination bugs, we adapt the notions of attention and semantic segmentation, previously used for other application domains, to programs. Overall, we designed and implemented classifiers for program termination based on Graph Convolutional Networks and Graph Attention Networks, as well as a semantic segmentation Graph Neural Network that localizes AST nodes likely to cause nontermination. We also illustrated how the information provided by semantic segmentation can be combined with program slicing to further aid debugging." @default.
- W4308641503 created "2022-11-13" @default.
- W4308641503 creator A5020547989 @default.
- W4308641503 creator A5072292925 @default.
- W4308641503 date "2022-11-07" @default.
- W4308641503 modified "2023-10-16" @default.
- W4308641503 title "Using graph neural networks for program termination" @default.
- W4308641503 cites W14146387 @default.
- W4308641503 cites W1505537169 @default.
- W4308641503 cites W1507859480 @default.
- W4308641503 cites W1589106570 @default.
- W4308641503 cites W1989813138 @default.
- W4308641503 cites W2039525895 @default.
- W4308641503 cites W2064675550 @default.
- W4308641503 cites W2141109493 @default.
- W4308641503 cites W2161089445 @default.
- W4308641503 cites W2318848039 @default.
- W4308641503 cites W2330219538 @default.
- W4308641503 cites W2465098971 @default.
- W4308641503 cites W2604314403 @default.
- W4308641503 cites W2614456850 @default.
- W4308641503 cites W2752631201 @default.
- W4308641503 cites W2804247906 @default.
- W4308641503 cites W286513891 @default.
- W4308641503 cites W2883453547 @default.
- W4308641503 cites W2890848214 @default.
- W4308641503 cites W2963351448 @default.
- W4308641503 cites W2963406064 @default.
- W4308641503 cites W2997035976 @default.
- W4308641503 cites W3011667710 @default.
- W4308641503 cites W3112139896 @default.
- W4308641503 cites W3152893301 @default.
- W4308641503 cites W3166575995 @default.
- W4308641503 cites W3172265307 @default.
- W4308641503 cites W3185902186 @default.
- W4308641503 cites W3186149862 @default.
- W4308641503 cites W4206214607 @default.
- W4308641503 cites W4225751037 @default.
- W4308641503 cites W4232668957 @default.
- W4308641503 cites W4240185672 @default.
- W4308641503 doi "https://doi.org/10.1145/3540250.3549095" @default.
- W4308641503 hasPublicationYear "2022" @default.
- W4308641503 type Work @default.
- W4308641503 citedByCount "2" @default.
- W4308641503 countsByYear W43086415032022 @default.
- W4308641503 countsByYear W43086415032023 @default.
- W4308641503 crossrefType "proceedings-article" @default.
- W4308641503 hasAuthorship W4308641503A5020547989 @default.
- W4308641503 hasAuthorship W4308641503A5072292925 @default.
- W4308641503 hasBestOaLocation W43086415031 @default.
- W4308641503 hasConcept C119857082 @default.
- W4308641503 hasConcept C132525143 @default.
- W4308641503 hasConcept C136388014 @default.
- W4308641503 hasConcept C154945302 @default.
- W4308641503 hasConcept C168065819 @default.
- W4308641503 hasConcept C184337299 @default.
- W4308641503 hasConcept C199360897 @default.
- W4308641503 hasConcept C2778514511 @default.
- W4308641503 hasConcept C39920170 @default.
- W4308641503 hasConcept C41008148 @default.
- W4308641503 hasConcept C50644808 @default.
- W4308641503 hasConcept C80444323 @default.
- W4308641503 hasConcept C91071405 @default.
- W4308641503 hasConceptScore W4308641503C119857082 @default.
- W4308641503 hasConceptScore W4308641503C132525143 @default.
- W4308641503 hasConceptScore W4308641503C136388014 @default.
- W4308641503 hasConceptScore W4308641503C154945302 @default.
- W4308641503 hasConceptScore W4308641503C168065819 @default.
- W4308641503 hasConceptScore W4308641503C184337299 @default.
- W4308641503 hasConceptScore W4308641503C199360897 @default.
- W4308641503 hasConceptScore W4308641503C2778514511 @default.
- W4308641503 hasConceptScore W4308641503C39920170 @default.
- W4308641503 hasConceptScore W4308641503C41008148 @default.
- W4308641503 hasConceptScore W4308641503C50644808 @default.
- W4308641503 hasConceptScore W4308641503C80444323 @default.
- W4308641503 hasConceptScore W4308641503C91071405 @default.
- W4308641503 hasFunder F4320320006 @default.
- W4308641503 hasLocation W43086415031 @default.
- W4308641503 hasLocation W43086415032 @default.
- W4308641503 hasLocation W43086415033 @default.
- W4308641503 hasOpenAccess W4308641503 @default.
- W4308641503 hasPrimaryLocation W43086415031 @default.
- W4308641503 hasRelatedWork W1529641537 @default.
- W4308641503 hasRelatedWork W1536968357 @default.
- W4308641503 hasRelatedWork W1559721426 @default.
- W4308641503 hasRelatedWork W1587224678 @default.
- W4308641503 hasRelatedWork W2002183011 @default.
- W4308641503 hasRelatedWork W2042825714 @default.
- W4308641503 hasRelatedWork W2268386177 @default.
- W4308641503 hasRelatedWork W2763950260 @default.
- W4308641503 hasRelatedWork W2951984454 @default.
- W4308641503 hasRelatedWork W809874456 @default.
- W4308641503 isParatext "false" @default.
- W4308641503 isRetracted "false" @default.
- W4308641503 workType "article" @default.