Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308643025> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4308643025 abstract "There is often a scarcity of training data for machine learning (ML) classification and regression models in industrial production, especially for time-consuming or sparsely run manufacturing processes. Traditionally, a majority of the limited ground-truth data is used for training, while a handful of samples are left for testing. In that case, the number of test samples is inadequate to properly evaluate the robustness of the ML models under test (i.e., the system under test) for classification and regression. Furthermore, the output of these ML models may be inaccurate or even fail if the input data differ from the expected. This is the case for ML models used in the Electroslag Remelting (ESR) process in the refined steel industry to predict the pressure in a vacuum chamber. A vacuum pumping event that occurs once a workday generates a few hundred samples in a year of pumping for training and testing. In the absence of adequate training and test samples, this paper first presents a method to generate a fresh set of augmented samples based on vacuum pumping principles. Based on the generated augmented samples, three test scenarios and one test oracle are presented to assess the robustness of an ML model used for production on an industrial scale. Experiments are conducted with real industrial production data obtained from Uddeholms AB steel company. The evaluations indicate that Ensemble and Neural Network are the most robust when trained on augmented data using the proposed testing strategy. The evaluation also demonstrates the proposed method's effectiveness in checking and improving ML algorithms' robustness in such situations. The work improves software testing's state-of-the-art robustness testing in similar settings. Finally, the paper presents an MLOps implementation of the proposed approach for real-time ML model prediction and action on the edge node and automated continuous delivery of ML software from the cloud." @default.
- W4308643025 created "2022-11-13" @default.
- W4308643025 creator A5008184102 @default.
- W4308643025 creator A5031391282 @default.
- W4308643025 creator A5064808748 @default.
- W4308643025 creator A5082756385 @default.
- W4308643025 date "2022-11-07" @default.
- W4308643025 modified "2023-10-10" @default.
- W4308643025 title "Testing of machine learning models with limited samples: an industrial vacuum pumping application" @default.
- W4308643025 cites W2005501916 @default.
- W4308643025 cites W2042154985 @default.
- W4308643025 cites W2586461909 @default.
- W4308643025 cites W2594778042 @default.
- W4308643025 cites W2596787870 @default.
- W4308643025 cites W2746127766 @default.
- W4308643025 cites W2804694819 @default.
- W4308643025 cites W2890344874 @default.
- W4308643025 cites W2892456951 @default.
- W4308643025 cites W2896236534 @default.
- W4308643025 cites W2910881901 @default.
- W4308643025 cites W2981679558 @default.
- W4308643025 cites W3007157104 @default.
- W4308643025 cites W3097324885 @default.
- W4308643025 cites W3100487172 @default.
- W4308643025 cites W3108161109 @default.
- W4308643025 cites W3135401736 @default.
- W4308643025 cites W3191026187 @default.
- W4308643025 doi "https://doi.org/10.1145/3540250.3558943" @default.
- W4308643025 hasPublicationYear "2022" @default.
- W4308643025 type Work @default.
- W4308643025 citedByCount "1" @default.
- W4308643025 countsByYear W43086430252022 @default.
- W4308643025 crossrefType "proceedings-article" @default.
- W4308643025 hasAuthorship W4308643025A5008184102 @default.
- W4308643025 hasAuthorship W4308643025A5031391282 @default.
- W4308643025 hasAuthorship W4308643025A5064808748 @default.
- W4308643025 hasAuthorship W4308643025A5082756385 @default.
- W4308643025 hasBestOaLocation W43086430251 @default.
- W4308643025 hasConcept C104317684 @default.
- W4308643025 hasConcept C115903868 @default.
- W4308643025 hasConcept C119857082 @default.
- W4308643025 hasConcept C124101348 @default.
- W4308643025 hasConcept C146849305 @default.
- W4308643025 hasConcept C154945302 @default.
- W4308643025 hasConcept C16910744 @default.
- W4308643025 hasConcept C169903167 @default.
- W4308643025 hasConcept C185592680 @default.
- W4308643025 hasConcept C199360897 @default.
- W4308643025 hasConcept C41008148 @default.
- W4308643025 hasConcept C45942800 @default.
- W4308643025 hasConcept C48921125 @default.
- W4308643025 hasConcept C50644808 @default.
- W4308643025 hasConcept C55166926 @default.
- W4308643025 hasConcept C55493867 @default.
- W4308643025 hasConcept C63479239 @default.
- W4308643025 hasConceptScore W4308643025C104317684 @default.
- W4308643025 hasConceptScore W4308643025C115903868 @default.
- W4308643025 hasConceptScore W4308643025C119857082 @default.
- W4308643025 hasConceptScore W4308643025C124101348 @default.
- W4308643025 hasConceptScore W4308643025C146849305 @default.
- W4308643025 hasConceptScore W4308643025C154945302 @default.
- W4308643025 hasConceptScore W4308643025C16910744 @default.
- W4308643025 hasConceptScore W4308643025C169903167 @default.
- W4308643025 hasConceptScore W4308643025C185592680 @default.
- W4308643025 hasConceptScore W4308643025C199360897 @default.
- W4308643025 hasConceptScore W4308643025C41008148 @default.
- W4308643025 hasConceptScore W4308643025C45942800 @default.
- W4308643025 hasConceptScore W4308643025C48921125 @default.
- W4308643025 hasConceptScore W4308643025C50644808 @default.
- W4308643025 hasConceptScore W4308643025C55166926 @default.
- W4308643025 hasConceptScore W4308643025C55493867 @default.
- W4308643025 hasConceptScore W4308643025C63479239 @default.
- W4308643025 hasLocation W43086430251 @default.
- W4308643025 hasLocation W43086430252 @default.
- W4308643025 hasLocation W43086430253 @default.
- W4308643025 hasOpenAccess W4308643025 @default.
- W4308643025 hasPrimaryLocation W43086430251 @default.
- W4308643025 hasRelatedWork W1574942924 @default.
- W4308643025 hasRelatedWork W2027071967 @default.
- W4308643025 hasRelatedWork W2028462208 @default.
- W4308643025 hasRelatedWork W2187490799 @default.
- W4308643025 hasRelatedWork W2363004085 @default.
- W4308643025 hasRelatedWork W2982831492 @default.
- W4308643025 hasRelatedWork W3094735304 @default.
- W4308643025 hasRelatedWork W3138055416 @default.
- W4308643025 hasRelatedWork W4285337533 @default.
- W4308643025 hasRelatedWork W4362604364 @default.
- W4308643025 isParatext "false" @default.
- W4308643025 isRetracted "false" @default.
- W4308643025 workType "article" @default.