Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308648698> ?p ?o ?g. }
- W4308648698 endingPage "413" @default.
- W4308648698 startingPage "387" @default.
- W4308648698 abstract "Abstract Physics-guided machine learning (PGML) offers a new approach to stability modeling during machining that leverages experimental data generated during the machining process while incorporating decades of theoretical process modeling efforts. This approach addresses specific limitations of machine learning models and physics-based models individually. Data-driven machine learning models are typically black box models that do not provide deep insight into the underlying physics and do not reflect physical constraints for the modeled system, sometimes yielding solutions that violate physical laws or operational constraints. In addition, acquiring the large amounts of manufacturing data needed for machine learning modeling can be costly. On the other hand, many physical processes are not completely understood by domain experts and have a high degree of uncertainty. Physics-based models must make simplifying assumptions that can compromise prediction accuracy. This research explores whether data generated by an uncertain physics-based milling stability model that is used to train a physics-guided machine learning stability model, and then updated with measured data, domain knowledge, and theory-based knowledge provides a useful approximation to the unknown true stability model for a specific set of factory operating conditions. Four novel strategies for updating the machine learning model with experimental data are explored. These updating strategies differ in their assumptions about and implementation of the type of physics-based knowledge included in the PGML model. Using a simulation experiment, these strategies achieve useful approximations of the underlying true stability model while reducing the number of experimental measurements required for model update." @default.
- W4308648698 created "2022-11-13" @default.
- W4308648698 creator A5005914514 @default.
- W4308648698 creator A5049697655 @default.
- W4308648698 creator A5076200918 @default.
- W4308648698 creator A5080494809 @default.
- W4308648698 creator A5081242413 @default.
- W4308648698 date "2022-11-09" @default.
- W4308648698 modified "2023-10-01" @default.
- W4308648698 title "Stability modeling for chatter avoidance in self-aware machining: an application of physics-guided machine learning" @default.
- W4308648698 cites W1873726805 @default.
- W4308648698 cites W1980640510 @default.
- W4308648698 cites W1991069712 @default.
- W4308648698 cites W2006423542 @default.
- W4308648698 cites W2011839675 @default.
- W4308648698 cites W2031391169 @default.
- W4308648698 cites W2300008877 @default.
- W4308648698 cites W2576781311 @default.
- W4308648698 cites W2734256217 @default.
- W4308648698 cites W2782812883 @default.
- W4308648698 cites W2788276261 @default.
- W4308648698 cites W2791288760 @default.
- W4308648698 cites W2795624964 @default.
- W4308648698 cites W2799987187 @default.
- W4308648698 cites W2802507231 @default.
- W4308648698 cites W2809421710 @default.
- W4308648698 cites W2810723856 @default.
- W4308648698 cites W2888663528 @default.
- W4308648698 cites W2899283552 @default.
- W4308648698 cites W2945526235 @default.
- W4308648698 cites W2948851421 @default.
- W4308648698 cites W2962757926 @default.
- W4308648698 cites W2995375411 @default.
- W4308648698 cites W2998222719 @default.
- W4308648698 cites W3006087551 @default.
- W4308648698 cites W3019144150 @default.
- W4308648698 cites W3022953487 @default.
- W4308648698 cites W3084992777 @default.
- W4308648698 cites W3091208650 @default.
- W4308648698 cites W3093010392 @default.
- W4308648698 cites W3129039771 @default.
- W4308648698 cites W3136841107 @default.
- W4308648698 cites W3163993681 @default.
- W4308648698 cites W3178973963 @default.
- W4308648698 cites W3180439084 @default.
- W4308648698 cites W3201589928 @default.
- W4308648698 cites W4210294265 @default.
- W4308648698 cites W4238441523 @default.
- W4308648698 cites W4288039037 @default.
- W4308648698 cites W943292423 @default.
- W4308648698 doi "https://doi.org/10.1007/s10845-022-01999-w" @default.
- W4308648698 hasPublicationYear "2022" @default.
- W4308648698 type Work @default.
- W4308648698 citedByCount "3" @default.
- W4308648698 countsByYear W43086486982023 @default.
- W4308648698 crossrefType "journal-article" @default.
- W4308648698 hasAuthorship W4308648698A5005914514 @default.
- W4308648698 hasAuthorship W4308648698A5049697655 @default.
- W4308648698 hasAuthorship W4308648698A5076200918 @default.
- W4308648698 hasAuthorship W4308648698A5080494809 @default.
- W4308648698 hasAuthorship W4308648698A5081242413 @default.
- W4308648698 hasBestOaLocation W43086486981 @default.
- W4308648698 hasConcept C105795698 @default.
- W4308648698 hasConcept C111919701 @default.
- W4308648698 hasConcept C112972136 @default.
- W4308648698 hasConcept C116672817 @default.
- W4308648698 hasConcept C119857082 @default.
- W4308648698 hasConcept C121332964 @default.
- W4308648698 hasConcept C127413603 @default.
- W4308648698 hasConcept C134306372 @default.
- W4308648698 hasConcept C13736549 @default.
- W4308648698 hasConcept C154945302 @default.
- W4308648698 hasConcept C177264268 @default.
- W4308648698 hasConcept C194583477 @default.
- W4308648698 hasConcept C199360897 @default.
- W4308648698 hasConcept C33923547 @default.
- W4308648698 hasConcept C36503486 @default.
- W4308648698 hasConcept C41008148 @default.
- W4308648698 hasConcept C523214423 @default.
- W4308648698 hasConcept C55037315 @default.
- W4308648698 hasConcept C62520636 @default.
- W4308648698 hasConcept C78519656 @default.
- W4308648698 hasConcept C98045186 @default.
- W4308648698 hasConceptScore W4308648698C105795698 @default.
- W4308648698 hasConceptScore W4308648698C111919701 @default.
- W4308648698 hasConceptScore W4308648698C112972136 @default.
- W4308648698 hasConceptScore W4308648698C116672817 @default.
- W4308648698 hasConceptScore W4308648698C119857082 @default.
- W4308648698 hasConceptScore W4308648698C121332964 @default.
- W4308648698 hasConceptScore W4308648698C127413603 @default.
- W4308648698 hasConceptScore W4308648698C134306372 @default.
- W4308648698 hasConceptScore W4308648698C13736549 @default.
- W4308648698 hasConceptScore W4308648698C154945302 @default.
- W4308648698 hasConceptScore W4308648698C177264268 @default.
- W4308648698 hasConceptScore W4308648698C194583477 @default.
- W4308648698 hasConceptScore W4308648698C199360897 @default.
- W4308648698 hasConceptScore W4308648698C33923547 @default.
- W4308648698 hasConceptScore W4308648698C36503486 @default.