Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308648934> ?p ?o ?g. }
- W4308648934 endingPage "e0276525" @default.
- W4308648934 startingPage "e0276525" @default.
- W4308648934 abstract "Maternal health is an important aspect of women's health during pregnancy, childbirth, and the postpartum period. Specifically, during pregnancy, different health factors like age, blood disorders, heart rate, etc. can lead to pregnancy complications. Detecting such health factors can alleviate the risk of pregnancy-related complications. This study aims to develop an artificial neural network-based system for predicting maternal health risks using health data records. A novel deep neural network architecture, DT-BiLTCN is proposed that uses decision trees, a bidirectional long short-term memory network, and a temporal convolutional network. Experiments involve using a dataset of 1218 samples collected from maternal health care, hospitals, and community clinics using the IoT-based risk monitoring system. Class imbalance is resolved using the synthetic minority oversampling technique. DT-BiLTCN provides a feature set to obtain high accuracy results which in this case are provided by the support vector machine with a 98% accuracy. Maternal health exploratory data analysis reveals that the health conditions which are the strongest indications of health risk during pregnancy are diastolic and systolic blood pressure, heart rate, and age of pregnant women. Using the proposed model, timely prediction of health risks associated with pregnant women can be made thus mitigating the risk of health complications which helps to save lives." @default.
- W4308648934 created "2022-11-13" @default.
- W4308648934 creator A5033845854 @default.
- W4308648934 creator A5039561400 @default.
- W4308648934 creator A5050698984 @default.
- W4308648934 creator A5058941449 @default.
- W4308648934 creator A5074629800 @default.
- W4308648934 creator A5085489082 @default.
- W4308648934 date "2022-11-09" @default.
- W4308648934 modified "2023-10-05" @default.
- W4308648934 title "Ensemble learning-based feature engineering to analyze maternal health during pregnancy and health risk prediction" @default.
- W4308648934 cites W2546620940 @default.
- W4308648934 cites W2763699126 @default.
- W4308648934 cites W2900085600 @default.
- W4308648934 cites W2912802963 @default.
- W4308648934 cites W2921407969 @default.
- W4308648934 cites W2921774528 @default.
- W4308648934 cites W2992717377 @default.
- W4308648934 cites W2995843219 @default.
- W4308648934 cites W3004021390 @default.
- W4308648934 cites W3005352776 @default.
- W4308648934 cites W3008194656 @default.
- W4308648934 cites W3011974631 @default.
- W4308648934 cites W3016706858 @default.
- W4308648934 cites W3019119825 @default.
- W4308648934 cites W3022717569 @default.
- W4308648934 cites W3043835189 @default.
- W4308648934 cites W3048338795 @default.
- W4308648934 cites W3048669449 @default.
- W4308648934 cites W3091808014 @default.
- W4308648934 cites W3092548157 @default.
- W4308648934 cites W3092600444 @default.
- W4308648934 cites W3097184277 @default.
- W4308648934 cites W3101906250 @default.
- W4308648934 cites W3108597174 @default.
- W4308648934 cites W3110357572 @default.
- W4308648934 cites W3115455310 @default.
- W4308648934 cites W3127393465 @default.
- W4308648934 cites W3131504710 @default.
- W4308648934 cites W3133722238 @default.
- W4308648934 cites W3134316734 @default.
- W4308648934 cites W3134331361 @default.
- W4308648934 cites W3134616030 @default.
- W4308648934 cites W3134761005 @default.
- W4308648934 cites W3135125674 @default.
- W4308648934 cites W3147237337 @default.
- W4308648934 cites W3150898546 @default.
- W4308648934 cites W3157148950 @default.
- W4308648934 cites W3159640536 @default.
- W4308648934 cites W3176463933 @default.
- W4308648934 cites W3179744583 @default.
- W4308648934 cites W3192834253 @default.
- W4308648934 cites W4200210418 @default.
- W4308648934 cites W4205922795 @default.
- W4308648934 cites W4206796315 @default.
- W4308648934 doi "https://doi.org/10.1371/journal.pone.0276525" @default.
- W4308648934 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36350808" @default.
- W4308648934 hasPublicationYear "2022" @default.
- W4308648934 type Work @default.
- W4308648934 citedByCount "15" @default.
- W4308648934 countsByYear W43086489342022 @default.
- W4308648934 countsByYear W43086489342023 @default.
- W4308648934 crossrefType "journal-article" @default.
- W4308648934 hasAuthorship W4308648934A5033845854 @default.
- W4308648934 hasAuthorship W4308648934A5039561400 @default.
- W4308648934 hasAuthorship W4308648934A5050698984 @default.
- W4308648934 hasAuthorship W4308648934A5058941449 @default.
- W4308648934 hasAuthorship W4308648934A5074629800 @default.
- W4308648934 hasAuthorship W4308648934A5085489082 @default.
- W4308648934 hasBestOaLocation W43086489341 @default.
- W4308648934 hasConcept C119857082 @default.
- W4308648934 hasConcept C126322002 @default.
- W4308648934 hasConcept C154945302 @default.
- W4308648934 hasConcept C160735492 @default.
- W4308648934 hasConcept C162324750 @default.
- W4308648934 hasConcept C197323446 @default.
- W4308648934 hasConcept C2776257435 @default.
- W4308648934 hasConcept C2779234561 @default.
- W4308648934 hasConcept C2779703513 @default.
- W4308648934 hasConcept C31258907 @default.
- W4308648934 hasConcept C41008148 @default.
- W4308648934 hasConcept C50522688 @default.
- W4308648934 hasConcept C54355233 @default.
- W4308648934 hasConcept C71924100 @default.
- W4308648934 hasConcept C84393581 @default.
- W4308648934 hasConcept C86803240 @default.
- W4308648934 hasConcept C99454951 @default.
- W4308648934 hasConceptScore W4308648934C119857082 @default.
- W4308648934 hasConceptScore W4308648934C126322002 @default.
- W4308648934 hasConceptScore W4308648934C154945302 @default.
- W4308648934 hasConceptScore W4308648934C160735492 @default.
- W4308648934 hasConceptScore W4308648934C162324750 @default.
- W4308648934 hasConceptScore W4308648934C197323446 @default.
- W4308648934 hasConceptScore W4308648934C2776257435 @default.
- W4308648934 hasConceptScore W4308648934C2779234561 @default.
- W4308648934 hasConceptScore W4308648934C2779703513 @default.
- W4308648934 hasConceptScore W4308648934C31258907 @default.
- W4308648934 hasConceptScore W4308648934C41008148 @default.