Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308649214> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4308649214 abstract "In streaming data environments like weather forecasting, health care monitoring, network traffic monitoring and energy consumption etc., data characteristics and probability distributions are likely to change over time, posing challenges for classification models to predict accurately. In such non-stationary environments where the patterns in data can change quickly, the pre-trained machine learning models may become outdated and hence, there is a need to update the model to maintain an acceptable predictive performance. Existing approaches to drift detection, particularly supervised and unsupervised, have inherent problems. Supervised methods detect drift based on the error rate and assume that labels are available immediately after prediction which may not be possible in several real-world scenarios. Unsupervised methods on the other hand suffer from high rate of false alarms and curse of dimensionality (i.e., the complexity faced in detecting drift across an increased number of features). To develop a more applicable technology, in this paper, we are concerned with unsupervised drift detection i.e., to detect drift independent of the labels. A recent set of experiments has revealed that it is possible to make an autoencoder learn the data distribution of a pre-defined set of classes and distinguish between the different class samples as they arrive. Based on this, we propose an Autoencoder-based Drift Detection Method (AE-DDM) which monitors the distribution of reconstruction loss in an incoming batch stream based on a thresholding mechanism to generate warnings and detect drift. AE-DDM has been tested on four synthetics (RBM, Hyperplane, Stagger and Gaussian)and one real word dataset (NOAA) with sudden and gradual drifts. AE-DDM starts generating warnings and then conforms the drift with zero delays in case of sudden drift with reduced false alarms. The classification results of ten most used machine learning classifiers on the NOAA dataset show that the detected drift is real. In this context, the potential contributions of our research are: 1) a novel framework for unsupervised drift detection based on the deep learning autoencoder technology, 2) A brief comparison of available drift detection approaches with proposed properties of an ideal drift detector, c) creation of a synthetic Gaussian dataset for drift detection research, and d) use of count threshold in conjunction with a batch threshold to combat false alarms in drift detection." @default.
- W4308649214 created "2022-11-13" @default.
- W4308649214 creator A5015133295 @default.
- W4308649214 creator A5073131330 @default.
- W4308649214 date "2022-11-09" @default.
- W4308649214 modified "2023-10-14" @default.
- W4308649214 title "A Novel Framework for Concept Drift Detection using Autoencoders for Classification Problems in Data Streams" @default.
- W4308649214 doi "https://doi.org/10.32388/zu17s4" @default.
- W4308649214 hasPublicationYear "2022" @default.
- W4308649214 type Work @default.
- W4308649214 citedByCount "0" @default.
- W4308649214 crossrefType "posted-content" @default.
- W4308649214 hasAuthorship W4308649214A5015133295 @default.
- W4308649214 hasAuthorship W4308649214A5073131330 @default.
- W4308649214 hasBestOaLocation W43086492141 @default.
- W4308649214 hasConcept C101738243 @default.
- W4308649214 hasConcept C108583219 @default.
- W4308649214 hasConcept C115961682 @default.
- W4308649214 hasConcept C119857082 @default.
- W4308649214 hasConcept C124101348 @default.
- W4308649214 hasConcept C153180895 @default.
- W4308649214 hasConcept C154945302 @default.
- W4308649214 hasConcept C177264268 @default.
- W4308649214 hasConcept C191178318 @default.
- W4308649214 hasConcept C199360897 @default.
- W4308649214 hasConcept C2778484313 @default.
- W4308649214 hasConcept C41008148 @default.
- W4308649214 hasConcept C60777511 @default.
- W4308649214 hasConcept C76155785 @default.
- W4308649214 hasConcept C8038995 @default.
- W4308649214 hasConcept C89198739 @default.
- W4308649214 hasConceptScore W4308649214C101738243 @default.
- W4308649214 hasConceptScore W4308649214C108583219 @default.
- W4308649214 hasConceptScore W4308649214C115961682 @default.
- W4308649214 hasConceptScore W4308649214C119857082 @default.
- W4308649214 hasConceptScore W4308649214C124101348 @default.
- W4308649214 hasConceptScore W4308649214C153180895 @default.
- W4308649214 hasConceptScore W4308649214C154945302 @default.
- W4308649214 hasConceptScore W4308649214C177264268 @default.
- W4308649214 hasConceptScore W4308649214C191178318 @default.
- W4308649214 hasConceptScore W4308649214C199360897 @default.
- W4308649214 hasConceptScore W4308649214C2778484313 @default.
- W4308649214 hasConceptScore W4308649214C41008148 @default.
- W4308649214 hasConceptScore W4308649214C60777511 @default.
- W4308649214 hasConceptScore W4308649214C76155785 @default.
- W4308649214 hasConceptScore W4308649214C8038995 @default.
- W4308649214 hasConceptScore W4308649214C89198739 @default.
- W4308649214 hasLocation W43086492141 @default.
- W4308649214 hasOpenAccess W4308649214 @default.
- W4308649214 hasPrimaryLocation W43086492141 @default.
- W4308649214 hasRelatedWork W1660343246 @default.
- W4308649214 hasRelatedWork W2026324356 @default.
- W4308649214 hasRelatedWork W2074501513 @default.
- W4308649214 hasRelatedWork W2079625735 @default.
- W4308649214 hasRelatedWork W2574092225 @default.
- W4308649214 hasRelatedWork W4308649214 @default.
- W4308649214 hasRelatedWork W4309956280 @default.
- W4308649214 hasRelatedWork W4317212428 @default.
- W4308649214 hasRelatedWork W4319779689 @default.
- W4308649214 hasRelatedWork W2187127952 @default.
- W4308649214 isParatext "false" @default.
- W4308649214 isRetracted "false" @default.
- W4308649214 workType "article" @default.