Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308652128> ?p ?o ?g. }
- W4308652128 endingPage "14723" @default.
- W4308652128 startingPage "14723" @default.
- W4308652128 abstract "The study of high-precision land-use classification is essential for the sustainable development of land resources. This study addresses the problem of classification errors in optical remote-sensing images under high surface humidity, cloud cover, and hazy weather. The synthetic aperture radar (SAR) images are sensitive to soil moisture, and the microwave can penetrate clouds, haze, and smoke. By using both the active and passive remote-sensing data, the Sentinel-1A SAR and Sentinel-2B multispectral (MS) images are combined synergistically. The full-band data combining the SAR + MS + spectral indexes is thus constructed. Based on the high dimensionality and heterogeneity of this data set, a new framework (MAM-HybridNet) based on two-dimensional (2D) and three-dimensional (3D) hybrid convolutional neural networks combined with multi-attention modules (MAMs) is proposed for improving the accuracy of land-use classification in cities with high surface humidity. In addition, the same training samples supported by All bands data (SAR + MS + spectral index) are selected and compared with k-Nearest Neighbors (KNN), support vector machine (SVM), 2D convolutional neural networks, 3D convolutional neural networks, and hybridSN classification models to verify the accuracy of the proposed classification model. The results show that (1) fusion classification based on Sentinel-2B MSI and Sentinel-1A SAR data produce an overall accuracy (OA) of 95.10%, a kappa coefficient (KC) of 0.93, and an average accuracy (AA) of 92.86%, which is better than the classification results using Sentinel-2B MSI and Sentinel-1A SAR images separately. (2) The classification accuracy improves upon adding the spectral index, and the OA, KC, and AA improve by 3.77%, 0.05, and 5.5%, respectively. (3) With the support of full-band data, the algorithm proposed herein produces better results than other classification algorithms, with an OA of 98.87%, a KC of 0.98, and an AA of 98.36%. These results indicate that the synergistic effect of active-passive remote-sensing data improves land-use classification. Additionally, the results verify the effectiveness of the proposed deep-learning classification model for land-use classification." @default.
- W4308652128 created "2022-11-13" @default.
- W4308652128 creator A5038654199 @default.
- W4308652128 creator A5068609823 @default.
- W4308652128 creator A5082634717 @default.
- W4308652128 creator A5086589010 @default.
- W4308652128 date "2022-11-08" @default.
- W4308652128 modified "2023-09-26" @default.
- W4308652128 title "Improving Typical Urban Land-Use Classification with Active-Passive Remote Sensing and Multi-Attention Modules Hybrid Network: A Case Study of Qibin District, Henan, China" @default.
- W4308652128 cites W1563226074 @default.
- W4308652128 cites W2006249338 @default.
- W4308652128 cites W2028240797 @default.
- W4308652128 cites W2130748089 @default.
- W4308652128 cites W2151689871 @default.
- W4308652128 cites W2160434086 @default.
- W4308652128 cites W2167595718 @default.
- W4308652128 cites W2540222487 @default.
- W4308652128 cites W2617671909 @default.
- W4308652128 cites W2745131289 @default.
- W4308652128 cites W2774571784 @default.
- W4308652128 cites W2783608381 @default.
- W4308652128 cites W2789876780 @default.
- W4308652128 cites W2796959188 @default.
- W4308652128 cites W2899931790 @default.
- W4308652128 cites W2907663452 @default.
- W4308652128 cites W2919955476 @default.
- W4308652128 cites W2920254659 @default.
- W4308652128 cites W2942170965 @default.
- W4308652128 cites W2946458187 @default.
- W4308652128 cites W2959328963 @default.
- W4308652128 cites W2989014883 @default.
- W4308652128 cites W2995766874 @default.
- W4308652128 cites W2999010101 @default.
- W4308652128 cites W3028248982 @default.
- W4308652128 cites W3036106951 @default.
- W4308652128 cites W3036312833 @default.
- W4308652128 cites W3037455920 @default.
- W4308652128 cites W3037587714 @default.
- W4308652128 cites W3040172617 @default.
- W4308652128 cites W3043257208 @default.
- W4308652128 cites W3087122056 @default.
- W4308652128 cites W3095927019 @default.
- W4308652128 cites W3103753223 @default.
- W4308652128 cites W3110908156 @default.
- W4308652128 cites W3124539583 @default.
- W4308652128 cites W3138900639 @default.
- W4308652128 cites W3146366485 @default.
- W4308652128 cites W3183470088 @default.
- W4308652128 cites W3198940810 @default.
- W4308652128 cites W3216046014 @default.
- W4308652128 cites W4283450732 @default.
- W4308652128 cites W4312865736 @default.
- W4308652128 doi "https://doi.org/10.3390/su142214723" @default.
- W4308652128 hasPublicationYear "2022" @default.
- W4308652128 type Work @default.
- W4308652128 citedByCount "3" @default.
- W4308652128 countsByYear W43086521282023 @default.
- W4308652128 crossrefType "journal-article" @default.
- W4308652128 hasAuthorship W4308652128A5038654199 @default.
- W4308652128 hasAuthorship W4308652128A5068609823 @default.
- W4308652128 hasAuthorship W4308652128A5082634717 @default.
- W4308652128 hasAuthorship W4308652128A5086589010 @default.
- W4308652128 hasBestOaLocation W43086521281 @default.
- W4308652128 hasConcept C119857082 @default.
- W4308652128 hasConcept C12267149 @default.
- W4308652128 hasConcept C127413603 @default.
- W4308652128 hasConcept C147176958 @default.
- W4308652128 hasConcept C153180895 @default.
- W4308652128 hasConcept C154945302 @default.
- W4308652128 hasConcept C163864269 @default.
- W4308652128 hasConcept C173163844 @default.
- W4308652128 hasConcept C205649164 @default.
- W4308652128 hasConcept C2780648208 @default.
- W4308652128 hasConcept C41008148 @default.
- W4308652128 hasConcept C4792198 @default.
- W4308652128 hasConcept C50644808 @default.
- W4308652128 hasConcept C51399673 @default.
- W4308652128 hasConcept C58489278 @default.
- W4308652128 hasConcept C62649853 @default.
- W4308652128 hasConcept C81363708 @default.
- W4308652128 hasConcept C87360688 @default.
- W4308652128 hasConceptScore W4308652128C119857082 @default.
- W4308652128 hasConceptScore W4308652128C12267149 @default.
- W4308652128 hasConceptScore W4308652128C127413603 @default.
- W4308652128 hasConceptScore W4308652128C147176958 @default.
- W4308652128 hasConceptScore W4308652128C153180895 @default.
- W4308652128 hasConceptScore W4308652128C154945302 @default.
- W4308652128 hasConceptScore W4308652128C163864269 @default.
- W4308652128 hasConceptScore W4308652128C173163844 @default.
- W4308652128 hasConceptScore W4308652128C205649164 @default.
- W4308652128 hasConceptScore W4308652128C2780648208 @default.
- W4308652128 hasConceptScore W4308652128C41008148 @default.
- W4308652128 hasConceptScore W4308652128C4792198 @default.
- W4308652128 hasConceptScore W4308652128C50644808 @default.
- W4308652128 hasConceptScore W4308652128C51399673 @default.
- W4308652128 hasConceptScore W4308652128C58489278 @default.
- W4308652128 hasConceptScore W4308652128C62649853 @default.
- W4308652128 hasConceptScore W4308652128C81363708 @default.