Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308653704> ?p ?o ?g. }
- W4308653704 abstract "Karst rocky desertification (KRD) has become one of the most serious ecological and environmental problems in karst areas. At present, mapping KRD with a high accuracy and on a large scale is still a difficult problem in the control of KRD. In this study, a random forest (RF) based on maximum information coefficient and correlation coefficient feature selection is proposed to predict KRD. Nine predictors stood out as feature factors to estimate KRD. Rock exposure was the most important predictor, followed by fractional vegetation cover for the prediction of KRD processes. The kappa and classification accuracy indexes were to evaluate the performance of the model. We recorded overall accuracy rate and kappa index values of 94.7% and 0.92 for the testing datasets respectively. The RF model was then used to predict the KRD in 2001, 2011, 2016, and 2020, and it was found that the KRD in the study area has exhibited a positive trend of improvement. Therefore, the use of multisource remote sensing data combined with the RF model can obtain better prediction results of KRD, thereby providing a new idea for large-scale estimation of the KRD in peak-cluster depression." @default.
- W4308653704 created "2022-11-13" @default.
- W4308653704 creator A5031585645 @default.
- W4308653704 creator A5038321620 @default.
- W4308653704 creator A5039837606 @default.
- W4308653704 creator A5054829028 @default.
- W4308653704 creator A5055162501 @default.
- W4308653704 creator A5056017299 @default.
- W4308653704 creator A5060002817 @default.
- W4308653704 creator A5068225547 @default.
- W4308653704 creator A5084576455 @default.
- W4308653704 date "2022-11-09" @default.
- W4308653704 modified "2023-10-17" @default.
- W4308653704 title "Machine learning algorithm for estimating karst rocky desertification in a peak-cluster depression basin in southwest Guangxi, China" @default.
- W4308653704 cites W1962677083 @default.
- W4308653704 cites W1967434871 @default.
- W4308653704 cites W1974811036 @default.
- W4308653704 cites W1981601334 @default.
- W4308653704 cites W2005932078 @default.
- W4308653704 cites W2015998199 @default.
- W4308653704 cites W2027442956 @default.
- W4308653704 cites W2033716157 @default.
- W4308653704 cites W2065505657 @default.
- W4308653704 cites W2084729856 @default.
- W4308653704 cites W2101424567 @default.
- W4308653704 cites W2103304742 @default.
- W4308653704 cites W2132424470 @default.
- W4308653704 cites W2145752458 @default.
- W4308653704 cites W2165700458 @default.
- W4308653704 cites W2184860266 @default.
- W4308653704 cites W2261059368 @default.
- W4308653704 cites W2287714391 @default.
- W4308653704 cites W2531657329 @default.
- W4308653704 cites W2614921098 @default.
- W4308653704 cites W2748127925 @default.
- W4308653704 cites W2769262270 @default.
- W4308653704 cites W2783216674 @default.
- W4308653704 cites W2896955771 @default.
- W4308653704 cites W2908031888 @default.
- W4308653704 cites W2971636267 @default.
- W4308653704 cites W2972629016 @default.
- W4308653704 cites W2974097761 @default.
- W4308653704 cites W2990838814 @default.
- W4308653704 cites W3004318819 @default.
- W4308653704 cites W3021429973 @default.
- W4308653704 cites W3035016089 @default.
- W4308653704 cites W3082545275 @default.
- W4308653704 cites W3106276608 @default.
- W4308653704 cites W3144605824 @default.
- W4308653704 cites W3152432465 @default.
- W4308653704 cites W3152668696 @default.
- W4308653704 cites W3156421235 @default.
- W4308653704 cites W3173869539 @default.
- W4308653704 cites W3177231024 @default.
- W4308653704 cites W3197830923 @default.
- W4308653704 cites W3197904952 @default.
- W4308653704 cites W3201319466 @default.
- W4308653704 cites W3201738124 @default.
- W4308653704 cites W3208757808 @default.
- W4308653704 cites W4281763080 @default.
- W4308653704 cites W4283168623 @default.
- W4308653704 doi "https://doi.org/10.1038/s41598-022-21684-5" @default.
- W4308653704 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36352040" @default.
- W4308653704 hasPublicationYear "2022" @default.
- W4308653704 type Work @default.
- W4308653704 citedByCount "3" @default.
- W4308653704 countsByYear W43086537042023 @default.
- W4308653704 crossrefType "journal-article" @default.
- W4308653704 hasAuthorship W4308653704A5031585645 @default.
- W4308653704 hasAuthorship W4308653704A5038321620 @default.
- W4308653704 hasAuthorship W4308653704A5039837606 @default.
- W4308653704 hasAuthorship W4308653704A5054829028 @default.
- W4308653704 hasAuthorship W4308653704A5055162501 @default.
- W4308653704 hasAuthorship W4308653704A5056017299 @default.
- W4308653704 hasAuthorship W4308653704A5060002817 @default.
- W4308653704 hasAuthorship W4308653704A5068225547 @default.
- W4308653704 hasAuthorship W4308653704A5084576455 @default.
- W4308653704 hasBestOaLocation W43086537041 @default.
- W4308653704 hasConcept C100970517 @default.
- W4308653704 hasConcept C105795698 @default.
- W4308653704 hasConcept C11413529 @default.
- W4308653704 hasConcept C119857082 @default.
- W4308653704 hasConcept C142724271 @default.
- W4308653704 hasConcept C163864269 @default.
- W4308653704 hasConcept C164866538 @default.
- W4308653704 hasConcept C166957645 @default.
- W4308653704 hasConcept C169258074 @default.
- W4308653704 hasConcept C182348080 @default.
- W4308653704 hasConcept C199360897 @default.
- W4308653704 hasConcept C205649164 @default.
- W4308653704 hasConcept C2776133958 @default.
- W4308653704 hasConcept C2778755073 @default.
- W4308653704 hasConcept C2780092901 @default.
- W4308653704 hasConcept C33923547 @default.
- W4308653704 hasConcept C39432304 @default.
- W4308653704 hasConcept C41008148 @default.
- W4308653704 hasConcept C58640448 @default.
- W4308653704 hasConcept C71924100 @default.
- W4308653704 hasConceptScore W4308653704C100970517 @default.
- W4308653704 hasConceptScore W4308653704C105795698 @default.