Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308654966> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4308654966 abstract "In the communications system, when received signals do not include noises, we can accurately perform blind equalizations. However, when received signals include noises, equalization performance generally deteriorates. To solve this problem, an equalization method using Total Least Squares (TLS) with a noise removal unit was proposed. This method had a problem that it was slower convergence rate because this method was used the gradient method based on TLS for channel estimation and LMS method as the gradient method based on Mean Square Error (MSE) for the calculation of equalizer parameters. Therefore, in this paper, we aim to propose a higher convergence blind equalization method with noise removal unit. In the proposed method, first, for higher convergence rate of channel estimation, we propose a recursive method with an update rule that is like Recursive Least Squares (RLS) method based on TLS, noting that RLS method based on Least Squares is higher convergence rate. Second, the result is used for removing noises. Third, we calculate equalization parameters using estimated channel characteristics. In this calculation, RLS method instead of LMS method as gradient method is used for higher convergence rate. Last, we can achieve higher convergence rate can be obtained with maintaining higher equalization performance by giving these parameters to the equalizer every sample time. The proposed method is evaluated by computer simulation." @default.
- W4308654966 created "2022-11-13" @default.
- W4308654966 creator A5006914306 @default.
- W4308654966 creator A5046634987 @default.
- W4308654966 creator A5077156821 @default.
- W4308654966 date "2022-09-27" @default.
- W4308654966 modified "2023-10-16" @default.
- W4308654966 title "Higher Convergence Adaptive Equalization Method with Noise Removal Function Using Total Least Squares Method" @default.
- W4308654966 cites W2138668867 @default.
- W4308654966 cites W2169135280 @default.
- W4308654966 cites W2397080796 @default.
- W4308654966 cites W2570946241 @default.
- W4308654966 cites W3005884246 @default.
- W4308654966 cites W3213847436 @default.
- W4308654966 cites W4200523390 @default.
- W4308654966 doi "https://doi.org/10.1109/iscit55906.2022.9931266" @default.
- W4308654966 hasPublicationYear "2022" @default.
- W4308654966 type Work @default.
- W4308654966 citedByCount "0" @default.
- W4308654966 crossrefType "proceedings-article" @default.
- W4308654966 hasAuthorship W4308654966A5006914306 @default.
- W4308654966 hasAuthorship W4308654966A5046634987 @default.
- W4308654966 hasAuthorship W4308654966A5077156821 @default.
- W4308654966 hasConcept C102248274 @default.
- W4308654966 hasConcept C105795698 @default.
- W4308654966 hasConcept C11413529 @default.
- W4308654966 hasConcept C115961682 @default.
- W4308654966 hasConcept C127162648 @default.
- W4308654966 hasConcept C145249878 @default.
- W4308654966 hasConcept C154945302 @default.
- W4308654966 hasConcept C162324750 @default.
- W4308654966 hasConcept C185429906 @default.
- W4308654966 hasConcept C25125847 @default.
- W4308654966 hasConcept C2775924081 @default.
- W4308654966 hasConcept C2777303404 @default.
- W4308654966 hasConcept C32617633 @default.
- W4308654966 hasConcept C33923547 @default.
- W4308654966 hasConcept C41008148 @default.
- W4308654966 hasConcept C41425797 @default.
- W4308654966 hasConcept C47446073 @default.
- W4308654966 hasConcept C50522688 @default.
- W4308654966 hasConcept C57869625 @default.
- W4308654966 hasConcept C75755367 @default.
- W4308654966 hasConcept C76155785 @default.
- W4308654966 hasConcept C9936470 @default.
- W4308654966 hasConcept C99498987 @default.
- W4308654966 hasConceptScore W4308654966C102248274 @default.
- W4308654966 hasConceptScore W4308654966C105795698 @default.
- W4308654966 hasConceptScore W4308654966C11413529 @default.
- W4308654966 hasConceptScore W4308654966C115961682 @default.
- W4308654966 hasConceptScore W4308654966C127162648 @default.
- W4308654966 hasConceptScore W4308654966C145249878 @default.
- W4308654966 hasConceptScore W4308654966C154945302 @default.
- W4308654966 hasConceptScore W4308654966C162324750 @default.
- W4308654966 hasConceptScore W4308654966C185429906 @default.
- W4308654966 hasConceptScore W4308654966C25125847 @default.
- W4308654966 hasConceptScore W4308654966C2775924081 @default.
- W4308654966 hasConceptScore W4308654966C2777303404 @default.
- W4308654966 hasConceptScore W4308654966C32617633 @default.
- W4308654966 hasConceptScore W4308654966C33923547 @default.
- W4308654966 hasConceptScore W4308654966C41008148 @default.
- W4308654966 hasConceptScore W4308654966C41425797 @default.
- W4308654966 hasConceptScore W4308654966C47446073 @default.
- W4308654966 hasConceptScore W4308654966C50522688 @default.
- W4308654966 hasConceptScore W4308654966C57869625 @default.
- W4308654966 hasConceptScore W4308654966C75755367 @default.
- W4308654966 hasConceptScore W4308654966C76155785 @default.
- W4308654966 hasConceptScore W4308654966C9936470 @default.
- W4308654966 hasConceptScore W4308654966C99498987 @default.
- W4308654966 hasLocation W43086549661 @default.
- W4308654966 hasOpenAccess W4308654966 @default.
- W4308654966 hasPrimaryLocation W43086549661 @default.
- W4308654966 hasRelatedWork W1485299371 @default.
- W4308654966 hasRelatedWork W1959110285 @default.
- W4308654966 hasRelatedWork W2027630946 @default.
- W4308654966 hasRelatedWork W2061814430 @default.
- W4308654966 hasRelatedWork W2096698448 @default.
- W4308654966 hasRelatedWork W2148783226 @default.
- W4308654966 hasRelatedWork W2171207156 @default.
- W4308654966 hasRelatedWork W2364205128 @default.
- W4308654966 hasRelatedWork W2533893829 @default.
- W4308654966 hasRelatedWork W1594413119 @default.
- W4308654966 isParatext "false" @default.
- W4308654966 isRetracted "false" @default.
- W4308654966 workType "article" @default.