Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308658819> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4308658819 endingPage "036119812211328" @default.
- W4308658819 startingPage "036119812211328" @default.
- W4308658819 abstract "There have been many research efforts analyzing roundabouts to extract the gap acceptance parameters of critical and follow-up headways at the entry lanes, but most have not had automatic methods of outputting the desired headways. This paper proposes an automatic method for extracting headway information at roundabouts with roadside lidar data and demonstrating the use of the headway output for Highway Capacity Manual (HCM) roundabout capacity function calibration. The advantages of using roadside lidar sensors over video cameras are that it is less computationally demanding, has a greater detection range, and is effective in all lighting conditions. Roadside lidar provides high accuracy cloud points of all road users that can be converted into geolocated trajectories using software developed by the University of Nevada, Reno (UNR). Headway is then extracted using an ArcGIS plugin of Python Scripts developed by the authors. Roadside lidar data were collected at one roundabout in Reno, Nevada, United States during the daytime hours, and headway data were extracted from the trajectory output. With rejected, accepted, and follow-up headways extracted, Raff’s Method was employed to extract the critical headway and the average of the follow-up headways was calculated. These values were used to determine the entry capacity at a roundabout. The results for the capacity were validated with industry standard equations, providing evidence for an automatic method to extract crucial operational information. The methodology proposed in this paper opens the door for several more extended studies with roundabouts, vehicle-pedestrian interactions, and on-ramp merging events." @default.
- W4308658819 created "2022-11-13" @default.
- W4308658819 creator A5028735993 @default.
- W4308658819 creator A5070607350 @default.
- W4308658819 creator A5078176055 @default.
- W4308658819 date "2022-11-09" @default.
- W4308658819 modified "2023-10-16" @default.
- W4308658819 title "Headway Data Extraction and Highway Capacity Manual Capacity Function Calibration for Roundabouts With Roadside Lidar Data" @default.
- W4308658819 cites W2100642548 @default.
- W4308658819 cites W2909746114 @default.
- W4308658819 cites W2947986824 @default.
- W4308658819 cites W2990047606 @default.
- W4308658819 cites W3028544793 @default.
- W4308658819 doi "https://doi.org/10.1177/03611981221132853" @default.
- W4308658819 hasPublicationYear "2022" @default.
- W4308658819 type Work @default.
- W4308658819 citedByCount "0" @default.
- W4308658819 crossrefType "journal-article" @default.
- W4308658819 hasAuthorship W4308658819A5028735993 @default.
- W4308658819 hasAuthorship W4308658819A5070607350 @default.
- W4308658819 hasAuthorship W4308658819A5078176055 @default.
- W4308658819 hasConcept C105795698 @default.
- W4308658819 hasConcept C109157449 @default.
- W4308658819 hasConcept C127413603 @default.
- W4308658819 hasConcept C133462117 @default.
- W4308658819 hasConcept C165838908 @default.
- W4308658819 hasConcept C205649164 @default.
- W4308658819 hasConcept C22212356 @default.
- W4308658819 hasConcept C2776983907 @default.
- W4308658819 hasConcept C2779240695 @default.
- W4308658819 hasConcept C33923547 @default.
- W4308658819 hasConcept C41008148 @default.
- W4308658819 hasConcept C51399673 @default.
- W4308658819 hasConcept C58037377 @default.
- W4308658819 hasConcept C62649853 @default.
- W4308658819 hasConceptScore W4308658819C105795698 @default.
- W4308658819 hasConceptScore W4308658819C109157449 @default.
- W4308658819 hasConceptScore W4308658819C127413603 @default.
- W4308658819 hasConceptScore W4308658819C133462117 @default.
- W4308658819 hasConceptScore W4308658819C165838908 @default.
- W4308658819 hasConceptScore W4308658819C205649164 @default.
- W4308658819 hasConceptScore W4308658819C22212356 @default.
- W4308658819 hasConceptScore W4308658819C2776983907 @default.
- W4308658819 hasConceptScore W4308658819C2779240695 @default.
- W4308658819 hasConceptScore W4308658819C33923547 @default.
- W4308658819 hasConceptScore W4308658819C41008148 @default.
- W4308658819 hasConceptScore W4308658819C51399673 @default.
- W4308658819 hasConceptScore W4308658819C58037377 @default.
- W4308658819 hasConceptScore W4308658819C62649853 @default.
- W4308658819 hasLocation W43086588191 @default.
- W4308658819 hasOpenAccess W4308658819 @default.
- W4308658819 hasPrimaryLocation W43086588191 @default.
- W4308658819 hasRelatedWork W146823129 @default.
- W4308658819 hasRelatedWork W1884538006 @default.
- W4308658819 hasRelatedWork W207847479 @default.
- W4308658819 hasRelatedWork W2171021311 @default.
- W4308658819 hasRelatedWork W2290411013 @default.
- W4308658819 hasRelatedWork W2377992450 @default.
- W4308658819 hasRelatedWork W2889637334 @default.
- W4308658819 hasRelatedWork W298879411 @default.
- W4308658819 hasRelatedWork W3090923678 @default.
- W4308658819 hasRelatedWork W3202398481 @default.
- W4308658819 isParatext "false" @default.
- W4308658819 isRetracted "false" @default.
- W4308658819 workType "article" @default.