Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308659666> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4308659666 abstract "For the efficient digitalization of maps, it is neces-sary to register map code, which indicates scale and area range. The manual register of the map code is time-consuming and laborious. Moreover, the recognition accuracy of the traditional text detection method based on template matching cannot be guaranteed. In this study, we propose a deep learning method to recognize image code and solve the problem of inaccurate detection and inaccurate positioning of text areas in map code recognition. A map code target recognition neural network referred to as YOLO-MCRNN is trained first to identify, crop, and binarize the code area and obtain detailed images. Architec-turally, an attention mechanism is added to a bidirectional long short-term memory structure and integrated into the map code target recognition network. Single numbers were cut according to variations in pixel value to establish a template library used in the matching method to recognize the code. Then, we conducted a comparative experiment to demonstrate the efficacy of the proposed deep learning method, and the results show that the detection network model improved on the performance of the existing state-of-the-art methods. Recognition experiments were carried out on the image dataset of code images taken by a digital map instrument. The single character and code recognition accuracy of the proposed YOLO-MCRNN model were 0.956 and 0.985, respectively, exhibiting obvious advantages over conventional matching methods and the unimproved text detection model CRNN(Convolutional Neural Network). The YOLO-MCRNN map code recognition network can accurately locate text areas, extract effective deep features of an input image, and identify map code. Compared with CRNN neural networks, which lack regional positioning, YOLO-MCRNN can improve recognition accuracy and reduce time consumption. Thus, the proposed model can be highly effective as an automatic map code registration method." @default.
- W4308659666 created "2022-11-13" @default.
- W4308659666 creator A5000359400 @default.
- W4308659666 creator A5004702834 @default.
- W4308659666 creator A5011272018 @default.
- W4308659666 creator A5020473726 @default.
- W4308659666 creator A5021344058 @default.
- W4308659666 creator A5057327065 @default.
- W4308659666 date "2022-09-23" @default.
- W4308659666 modified "2023-09-23" @default.
- W4308659666 title "Deep Learning Based Map Code Recognition Method" @default.
- W4308659666 cites W1852879370 @default.
- W4308659666 cites W2194187530 @default.
- W4308659666 cites W2519818067 @default.
- W4308659666 cites W2605982830 @default.
- W4308659666 cites W2810315154 @default.
- W4308659666 cites W2963315052 @default.
- W4308659666 cites W2967615747 @default.
- W4308659666 cites W3003543459 @default.
- W4308659666 cites W3119032631 @default.
- W4308659666 doi "https://doi.org/10.1109/icoias56028.2022.9931286" @default.
- W4308659666 hasPublicationYear "2022" @default.
- W4308659666 type Work @default.
- W4308659666 citedByCount "0" @default.
- W4308659666 crossrefType "proceedings-article" @default.
- W4308659666 hasAuthorship W4308659666A5000359400 @default.
- W4308659666 hasAuthorship W4308659666A5004702834 @default.
- W4308659666 hasAuthorship W4308659666A5011272018 @default.
- W4308659666 hasAuthorship W4308659666A5020473726 @default.
- W4308659666 hasAuthorship W4308659666A5021344058 @default.
- W4308659666 hasAuthorship W4308659666A5057327065 @default.
- W4308659666 hasConcept C105795698 @default.
- W4308659666 hasConcept C108583219 @default.
- W4308659666 hasConcept C115961682 @default.
- W4308659666 hasConcept C153180895 @default.
- W4308659666 hasConcept C154945302 @default.
- W4308659666 hasConcept C158096908 @default.
- W4308659666 hasConcept C160633673 @default.
- W4308659666 hasConcept C165064840 @default.
- W4308659666 hasConcept C177264268 @default.
- W4308659666 hasConcept C199360897 @default.
- W4308659666 hasConcept C2776760102 @default.
- W4308659666 hasConcept C31972630 @default.
- W4308659666 hasConcept C33923547 @default.
- W4308659666 hasConcept C41008148 @default.
- W4308659666 hasConcept C50644808 @default.
- W4308659666 hasConcept C81363708 @default.
- W4308659666 hasConceptScore W4308659666C105795698 @default.
- W4308659666 hasConceptScore W4308659666C108583219 @default.
- W4308659666 hasConceptScore W4308659666C115961682 @default.
- W4308659666 hasConceptScore W4308659666C153180895 @default.
- W4308659666 hasConceptScore W4308659666C154945302 @default.
- W4308659666 hasConceptScore W4308659666C158096908 @default.
- W4308659666 hasConceptScore W4308659666C160633673 @default.
- W4308659666 hasConceptScore W4308659666C165064840 @default.
- W4308659666 hasConceptScore W4308659666C177264268 @default.
- W4308659666 hasConceptScore W4308659666C199360897 @default.
- W4308659666 hasConceptScore W4308659666C2776760102 @default.
- W4308659666 hasConceptScore W4308659666C31972630 @default.
- W4308659666 hasConceptScore W4308659666C33923547 @default.
- W4308659666 hasConceptScore W4308659666C41008148 @default.
- W4308659666 hasConceptScore W4308659666C50644808 @default.
- W4308659666 hasConceptScore W4308659666C81363708 @default.
- W4308659666 hasLocation W43086596661 @default.
- W4308659666 hasOpenAccess W4308659666 @default.
- W4308659666 hasPrimaryLocation W43086596661 @default.
- W4308659666 hasRelatedWork W1995188412 @default.
- W4308659666 hasRelatedWork W2040854736 @default.
- W4308659666 hasRelatedWork W2117070652 @default.
- W4308659666 hasRelatedWork W2128391139 @default.
- W4308659666 hasRelatedWork W2373807803 @default.
- W4308659666 hasRelatedWork W2391245565 @default.
- W4308659666 hasRelatedWork W2732542196 @default.
- W4308659666 hasRelatedWork W2738221750 @default.
- W4308659666 hasRelatedWork W3156786002 @default.
- W4308659666 hasRelatedWork W3186111093 @default.
- W4308659666 isParatext "false" @default.
- W4308659666 isRetracted "false" @default.
- W4308659666 workType "article" @default.