Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308659684> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4308659684 abstract "Diabetes is affecting a lot of people nowadays. It is a very common disease throughout the world. People found it difficult to predict the probability of this disease at an earlier stage. The disease is not curable yet by medical science but it can only be controlled. Furthermore, patients of this disease have to take medicines throughout their life. This disease can be predicted using different statistical tools. This paper proposed a machine learning based model to predict this disease on the basis of medical symptoms of a patient. Three best known machine learning algorithms are applied to predict diabetes which are KNN, Logistic Regression and Random Forest. Models of these machine learning algorithms are implemented using python programming language. The prediction accuracy of these three machine learning models is calculated and compared. The out coming results shows that the Random Forest performs best among these three machine learning models." @default.
- W4308659684 created "2022-11-13" @default.
- W4308659684 creator A5027466187 @default.
- W4308659684 date "2022-10-13" @default.
- W4308659684 modified "2023-09-27" @default.
- W4308659684 title "Performance Analysis of Supervised Machine Learning Algorithm for Prediction of Diabetes" @default.
- W4308659684 cites W2941992418 @default.
- W4308659684 cites W2947919073 @default.
- W4308659684 cites W2953421802 @default.
- W4308659684 cites W2964462869 @default.
- W4308659684 cites W2982134976 @default.
- W4308659684 cites W3002713390 @default.
- W4308659684 cites W3011427405 @default.
- W4308659684 cites W3090072574 @default.
- W4308659684 cites W3097563503 @default.
- W4308659684 cites W3117630153 @default.
- W4308659684 cites W3153080799 @default.
- W4308659684 cites W3179042059 @default.
- W4308659684 cites W3185352449 @default.
- W4308659684 cites W3188742853 @default.
- W4308659684 cites W3192834925 @default.
- W4308659684 cites W3202113604 @default.
- W4308659684 cites W3202116020 @default.
- W4308659684 cites W3209954905 @default.
- W4308659684 cites W3212387200 @default.
- W4308659684 cites W3214511178 @default.
- W4308659684 cites W3216252376 @default.
- W4308659684 cites W4213022051 @default.
- W4308659684 cites W4280635966 @default.
- W4308659684 cites W4281687158 @default.
- W4308659684 cites W4285343791 @default.
- W4308659684 cites W4289821157 @default.
- W4308659684 doi "https://doi.org/10.1109/icecaa55415.2022.9936503" @default.
- W4308659684 hasPublicationYear "2022" @default.
- W4308659684 type Work @default.
- W4308659684 citedByCount "0" @default.
- W4308659684 crossrefType "proceedings-article" @default.
- W4308659684 hasAuthorship W4308659684A5027466187 @default.
- W4308659684 hasConcept C110083411 @default.
- W4308659684 hasConcept C111919701 @default.
- W4308659684 hasConcept C11413529 @default.
- W4308659684 hasConcept C119857082 @default.
- W4308659684 hasConcept C142724271 @default.
- W4308659684 hasConcept C151956035 @default.
- W4308659684 hasConcept C154945302 @default.
- W4308659684 hasConcept C169258074 @default.
- W4308659684 hasConcept C2779134260 @default.
- W4308659684 hasConcept C2982736386 @default.
- W4308659684 hasConcept C41008148 @default.
- W4308659684 hasConcept C519991488 @default.
- W4308659684 hasConcept C71924100 @default.
- W4308659684 hasConceptScore W4308659684C110083411 @default.
- W4308659684 hasConceptScore W4308659684C111919701 @default.
- W4308659684 hasConceptScore W4308659684C11413529 @default.
- W4308659684 hasConceptScore W4308659684C119857082 @default.
- W4308659684 hasConceptScore W4308659684C142724271 @default.
- W4308659684 hasConceptScore W4308659684C151956035 @default.
- W4308659684 hasConceptScore W4308659684C154945302 @default.
- W4308659684 hasConceptScore W4308659684C169258074 @default.
- W4308659684 hasConceptScore W4308659684C2779134260 @default.
- W4308659684 hasConceptScore W4308659684C2982736386 @default.
- W4308659684 hasConceptScore W4308659684C41008148 @default.
- W4308659684 hasConceptScore W4308659684C519991488 @default.
- W4308659684 hasConceptScore W4308659684C71924100 @default.
- W4308659684 hasLocation W43086596841 @default.
- W4308659684 hasOpenAccess W4308659684 @default.
- W4308659684 hasPrimaryLocation W43086596841 @default.
- W4308659684 hasRelatedWork W2583008148 @default.
- W4308659684 hasRelatedWork W3204641204 @default.
- W4308659684 hasRelatedWork W4200459988 @default.
- W4308659684 hasRelatedWork W4282839226 @default.
- W4308659684 hasRelatedWork W4283016678 @default.
- W4308659684 hasRelatedWork W4285225238 @default.
- W4308659684 hasRelatedWork W4312949351 @default.
- W4308659684 hasRelatedWork W4322731370 @default.
- W4308659684 hasRelatedWork W4364301731 @default.
- W4308659684 hasRelatedWork W4372269110 @default.
- W4308659684 isParatext "false" @default.
- W4308659684 isRetracted "false" @default.
- W4308659684 workType "article" @default.