Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308661994> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4308661994 endingPage "3652" @default.
- W4308661994 startingPage "3652" @default.
- W4308661994 abstract "Learning outcomes are measurable statements that articulate educational aims in terms of what knowledge, skills, and other competences students possess after successfully completing a given learning experience. This paper presents an analysis of the disparity between the claimed and formulated learning outcomes categorized in knowledge, skills, and social responsibility competency classes as it is postulated in the European Qualification Framework. We employed machine learning classification algorithms to detect and reveal main errors in their formulation that result in incorrect classification using generally available syllabus data from 22 universities. The proposed method was employed in two stages: preprocessing (creating a Python dataframe structure) and classification (by performing tokenization with the term frequency–inverse document frequency method). The obtained results demonstrated high effectiveness in correct classification for a number of machine learning algorithms. The obtained sensitivity and specificity reached 0.8 for most cases with acceptable positive predictive values for social responsibility competency classes and relatively high negative predictive values greater than 0.8 for all classes. Hence, the presented methodology and results may be a prelude to conducting further studies associated with identifying learning outcomes." @default.
- W4308661994 created "2022-11-13" @default.
- W4308661994 creator A5004077113 @default.
- W4308661994 creator A5022838046 @default.
- W4308661994 creator A5032827800 @default.
- W4308661994 creator A5039833120 @default.
- W4308661994 creator A5050224189 @default.
- W4308661994 creator A5054096138 @default.
- W4308661994 date "2022-11-08" @default.
- W4308661994 modified "2023-09-26" @default.
- W4308661994 title "Study on Using Machine Learning-Driven Classification for Analysis of the Disparities between Categorized Learning Outcomes" @default.
- W4308661994 cites W1967747674 @default.
- W4308661994 cites W1978394996 @default.
- W4308661994 cites W2060204146 @default.
- W4308661994 cites W2063370556 @default.
- W4308661994 cites W2152808281 @default.
- W4308661994 cites W2159002562 @default.
- W4308661994 cites W2461038244 @default.
- W4308661994 cites W3102476541 @default.
- W4308661994 cites W3193740800 @default.
- W4308661994 cites W3217397078 @default.
- W4308661994 doi "https://doi.org/10.3390/electronics11223652" @default.
- W4308661994 hasPublicationYear "2022" @default.
- W4308661994 type Work @default.
- W4308661994 citedByCount "0" @default.
- W4308661994 crossrefType "journal-article" @default.
- W4308661994 hasAuthorship W4308661994A5004077113 @default.
- W4308661994 hasAuthorship W4308661994A5022838046 @default.
- W4308661994 hasAuthorship W4308661994A5032827800 @default.
- W4308661994 hasAuthorship W4308661994A5039833120 @default.
- W4308661994 hasAuthorship W4308661994A5050224189 @default.
- W4308661994 hasAuthorship W4308661994A5054096138 @default.
- W4308661994 hasBestOaLocation W43086619941 @default.
- W4308661994 hasConcept C119857082 @default.
- W4308661994 hasConcept C145420912 @default.
- W4308661994 hasConcept C154945302 @default.
- W4308661994 hasConcept C176982825 @default.
- W4308661994 hasConcept C33923547 @default.
- W4308661994 hasConcept C34736171 @default.
- W4308661994 hasConcept C41008148 @default.
- W4308661994 hasConcept C45504901 @default.
- W4308661994 hasConceptScore W4308661994C119857082 @default.
- W4308661994 hasConceptScore W4308661994C145420912 @default.
- W4308661994 hasConceptScore W4308661994C154945302 @default.
- W4308661994 hasConceptScore W4308661994C176982825 @default.
- W4308661994 hasConceptScore W4308661994C33923547 @default.
- W4308661994 hasConceptScore W4308661994C34736171 @default.
- W4308661994 hasConceptScore W4308661994C41008148 @default.
- W4308661994 hasConceptScore W4308661994C45504901 @default.
- W4308661994 hasIssue "22" @default.
- W4308661994 hasLocation W43086619941 @default.
- W4308661994 hasOpenAccess W4308661994 @default.
- W4308661994 hasPrimaryLocation W43086619941 @default.
- W4308661994 hasRelatedWork W1516839994 @default.
- W4308661994 hasRelatedWork W2382928216 @default.
- W4308661994 hasRelatedWork W2961085424 @default.
- W4308661994 hasRelatedWork W3046775127 @default.
- W4308661994 hasRelatedWork W3170094116 @default.
- W4308661994 hasRelatedWork W4285260836 @default.
- W4308661994 hasRelatedWork W4286629047 @default.
- W4308661994 hasRelatedWork W4306321456 @default.
- W4308661994 hasRelatedWork W4306674287 @default.
- W4308661994 hasRelatedWork W4224009465 @default.
- W4308661994 hasVolume "11" @default.
- W4308661994 isParatext "false" @default.
- W4308661994 isRetracted "false" @default.
- W4308661994 workType "article" @default.