Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308668166> ?p ?o ?g. }
- W4308668166 abstract "Modeling joint probability distributions is an important task in a wide variety of fields. One popular technique for this employs a family of multivariate distributions with uniform marginals called copulas. While the theory of modeling joint distributions via copulas is well understood, it gets practically challenging to accurately model real data with many variables. In this paper, we show that any copula can be naturally mapped to a multipartite maximally entangled state. Thus, the task of learning joint probability distributions becomes the task of learning maximally entangled states. We prove that a variational ansatz we christen as a ``qopula'' based on this insight leads to an exponential advantage over classical methods of learning some joint distributions. As an application, we train a quantum generative adversarial network (QGAN) and a quantum circuit Born machine (QCBM) using this variational ansatz to generate samples from joint distributions of two variables in historical data from the stock market. We demonstrate our generative learning algorithms on trapped ion quantum computers from IonQ for up to eight qubits. Our experimental results show interesting findings such as the resilience against noise, outperformance against equivalent classical models and 20--1000 times less iterations required to converge as compared to equivalent classical models." @default.
- W4308668166 created "2022-11-14" @default.
- W4308668166 creator A5012650976 @default.
- W4308668166 creator A5019206026 @default.
- W4308668166 creator A5036840618 @default.
- W4308668166 creator A5041180311 @default.
- W4308668166 creator A5041884560 @default.
- W4308668166 creator A5068351948 @default.
- W4308668166 creator A5070113661 @default.
- W4308668166 creator A5070300902 @default.
- W4308668166 creator A5076476753 @default.
- W4308668166 creator A5083873163 @default.
- W4308668166 creator A5085704775 @default.
- W4308668166 creator A5087684242 @default.
- W4308668166 date "2022-11-08" @default.
- W4308668166 modified "2023-10-06" @default.
- W4308668166 title "Generative quantum learning of joint probability distribution functions" @default.
- W4308668166 cites W1492999010 @default.
- W4308668166 cites W1970413795 @default.
- W4308668166 cites W1981783889 @default.
- W4308668166 cites W1993440542 @default.
- W4308668166 cites W2072690700 @default.
- W4308668166 cites W2078345446 @default.
- W4308668166 cites W2103956991 @default.
- W4308668166 cites W2113987286 @default.
- W4308668166 cites W2124289529 @default.
- W4308668166 cites W2125769353 @default.
- W4308668166 cites W2140810814 @default.
- W4308668166 cites W2305083767 @default.
- W4308668166 cites W2323333583 @default.
- W4308668166 cites W2324269130 @default.
- W4308668166 cites W2482126025 @default.
- W4308668166 cites W2487770199 @default.
- W4308668166 cites W2597712471 @default.
- W4308668166 cites W2771527763 @default.
- W4308668166 cites W2784994528 @default.
- W4308668166 cites W2794444783 @default.
- W4308668166 cites W2797767079 @default.
- W4308668166 cites W2798945316 @default.
- W4308668166 cites W2798967590 @default.
- W4308668166 cites W2896712926 @default.
- W4308668166 cites W2903221501 @default.
- W4308668166 cites W2924182316 @default.
- W4308668166 cites W2926552232 @default.
- W4308668166 cites W2980456669 @default.
- W4308668166 cites W2982304552 @default.
- W4308668166 cites W3097990818 @default.
- W4308668166 cites W3100618339 @default.
- W4308668166 cites W3100806676 @default.
- W4308668166 cites W3101479050 @default.
- W4308668166 cites W3111297213 @default.
- W4308668166 cites W3113233363 @default.
- W4308668166 cites W3119636101 @default.
- W4308668166 cites W3121781918 @default.
- W4308668166 cites W3124890026 @default.
- W4308668166 cites W3125452792 @default.
- W4308668166 cites W3136233239 @default.
- W4308668166 cites W3182433019 @default.
- W4308668166 cites W3189829096 @default.
- W4308668166 cites W3196492698 @default.
- W4308668166 cites W4226348722 @default.
- W4308668166 cites W4232474910 @default.
- W4308668166 cites W4248672808 @default.
- W4308668166 cites W4298227433 @default.
- W4308668166 cites W4302321873 @default.
- W4308668166 doi "https://doi.org/10.1103/physrevresearch.4.043092" @default.
- W4308668166 hasPublicationYear "2022" @default.
- W4308668166 type Work @default.
- W4308668166 citedByCount "8" @default.
- W4308668166 countsByYear W43086681662023 @default.
- W4308668166 crossrefType "journal-article" @default.
- W4308668166 hasAuthorship W4308668166A5012650976 @default.
- W4308668166 hasAuthorship W4308668166A5019206026 @default.
- W4308668166 hasAuthorship W4308668166A5036840618 @default.
- W4308668166 hasAuthorship W4308668166A5041180311 @default.
- W4308668166 hasAuthorship W4308668166A5041884560 @default.
- W4308668166 hasAuthorship W4308668166A5068351948 @default.
- W4308668166 hasAuthorship W4308668166A5070113661 @default.
- W4308668166 hasAuthorship W4308668166A5070300902 @default.
- W4308668166 hasAuthorship W4308668166A5076476753 @default.
- W4308668166 hasAuthorship W4308668166A5083873163 @default.
- W4308668166 hasAuthorship W4308668166A5085704775 @default.
- W4308668166 hasAuthorship W4308668166A5087684242 @default.
- W4308668166 hasBestOaLocation W43086681661 @default.
- W4308668166 hasConcept C105795698 @default.
- W4308668166 hasConcept C11413529 @default.
- W4308668166 hasConcept C121332964 @default.
- W4308668166 hasConcept C121864883 @default.
- W4308668166 hasConcept C122123141 @default.
- W4308668166 hasConcept C130979935 @default.
- W4308668166 hasConcept C149441793 @default.
- W4308668166 hasConcept C154945302 @default.
- W4308668166 hasConcept C165216359 @default.
- W4308668166 hasConcept C167966045 @default.
- W4308668166 hasConcept C18653775 @default.
- W4308668166 hasConcept C203087015 @default.
- W4308668166 hasConcept C2779094486 @default.
- W4308668166 hasConcept C28826006 @default.
- W4308668166 hasConcept C33923547 @default.
- W4308668166 hasConcept C37914503 @default.