Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308668712> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4308668712 abstract "In computer-aided drug discovery (CADD), virtual screening (VS) is used for identifying the drug candidates that are most likely to bind to a molecular target in a large library of compounds. Most VS methods to date have focused on using canonical compound representations (e.g., SMILES strings, Morgan fingerprints) or generating alternative fingerprints of the compounds by training progressively more complex variational autoencoders (VAEs) and graph neural networks (GNNs). Although VAEs and GNNs led to significant improvements in VS performance, these methods suffer from reduced performance when scaling to large virtual compound datasets. The performance of these methods has shown only incremental improvements in the past few years. To address this problem, we developed a novel method using multiparameter persistence (MP) homology that produces topological fingerprints of the compounds as multidimensional vectors. Our primary contribution is framing the VS process as a new topology-based graph ranking problem by partitioning a compound into chemical substructures informed by the periodic properties of its atoms and extracting their persistent homology features at multiple resolution levels. We show that the margin loss fine-tuning of pretrained Triplet networks attains highly competitive results in differentiating between compounds in the embedding space and ranking their likelihood of becoming effective drug candidates. We further establish theoretical guarantees for the stability properties of our proposed MP signatures, and demonstrate that our models, enhanced by the MP signatures, outperform state-of-the-art methods on benchmark datasets by a wide and highly statistically significant margin (e.g., 93% gain for Cleves-Jain and 54% gain for DUD-E Diverse dataset)." @default.
- W4308668712 created "2022-11-14" @default.
- W4308668712 creator A5008846865 @default.
- W4308668712 creator A5009756467 @default.
- W4308668712 creator A5013695426 @default.
- W4308668712 creator A5048460115 @default.
- W4308668712 creator A5058024103 @default.
- W4308668712 creator A5079209743 @default.
- W4308668712 date "2022-11-07" @default.
- W4308668712 modified "2023-10-04" @default.
- W4308668712 title "ToDD: Topological Compound Fingerprinting in Computer-Aided Drug Discovery" @default.
- W4308668712 doi "https://doi.org/10.48550/arxiv.2211.03808" @default.
- W4308668712 hasPublicationYear "2022" @default.
- W4308668712 type Work @default.
- W4308668712 citedByCount "0" @default.
- W4308668712 crossrefType "posted-content" @default.
- W4308668712 hasAuthorship W4308668712A5008846865 @default.
- W4308668712 hasAuthorship W4308668712A5009756467 @default.
- W4308668712 hasAuthorship W4308668712A5013695426 @default.
- W4308668712 hasAuthorship W4308668712A5048460115 @default.
- W4308668712 hasAuthorship W4308668712A5058024103 @default.
- W4308668712 hasAuthorship W4308668712A5079209743 @default.
- W4308668712 hasBestOaLocation W43086687121 @default.
- W4308668712 hasConcept C103697762 @default.
- W4308668712 hasConcept C11413529 @default.
- W4308668712 hasConcept C114614502 @default.
- W4308668712 hasConcept C119857082 @default.
- W4308668712 hasConcept C124101348 @default.
- W4308668712 hasConcept C132525143 @default.
- W4308668712 hasConcept C153180895 @default.
- W4308668712 hasConcept C154945302 @default.
- W4308668712 hasConcept C184720557 @default.
- W4308668712 hasConcept C189430467 @default.
- W4308668712 hasConcept C2776477805 @default.
- W4308668712 hasConcept C2874115 @default.
- W4308668712 hasConcept C33923547 @default.
- W4308668712 hasConcept C41008148 @default.
- W4308668712 hasConcept C41608201 @default.
- W4308668712 hasConcept C60644358 @default.
- W4308668712 hasConcept C74187038 @default.
- W4308668712 hasConcept C774472 @default.
- W4308668712 hasConcept C80444323 @default.
- W4308668712 hasConcept C86803240 @default.
- W4308668712 hasConceptScore W4308668712C103697762 @default.
- W4308668712 hasConceptScore W4308668712C11413529 @default.
- W4308668712 hasConceptScore W4308668712C114614502 @default.
- W4308668712 hasConceptScore W4308668712C119857082 @default.
- W4308668712 hasConceptScore W4308668712C124101348 @default.
- W4308668712 hasConceptScore W4308668712C132525143 @default.
- W4308668712 hasConceptScore W4308668712C153180895 @default.
- W4308668712 hasConceptScore W4308668712C154945302 @default.
- W4308668712 hasConceptScore W4308668712C184720557 @default.
- W4308668712 hasConceptScore W4308668712C189430467 @default.
- W4308668712 hasConceptScore W4308668712C2776477805 @default.
- W4308668712 hasConceptScore W4308668712C2874115 @default.
- W4308668712 hasConceptScore W4308668712C33923547 @default.
- W4308668712 hasConceptScore W4308668712C41008148 @default.
- W4308668712 hasConceptScore W4308668712C41608201 @default.
- W4308668712 hasConceptScore W4308668712C60644358 @default.
- W4308668712 hasConceptScore W4308668712C74187038 @default.
- W4308668712 hasConceptScore W4308668712C774472 @default.
- W4308668712 hasConceptScore W4308668712C80444323 @default.
- W4308668712 hasConceptScore W4308668712C86803240 @default.
- W4308668712 hasLocation W43086687121 @default.
- W4308668712 hasLocation W43086687122 @default.
- W4308668712 hasOpenAccess W4308668712 @default.
- W4308668712 hasPrimaryLocation W43086687121 @default.
- W4308668712 hasRelatedWork W2021630848 @default.
- W4308668712 hasRelatedWork W2115445832 @default.
- W4308668712 hasRelatedWork W2963833291 @default.
- W4308668712 hasRelatedWork W2987958590 @default.
- W4308668712 hasRelatedWork W2997403743 @default.
- W4308668712 hasRelatedWork W3035116611 @default.
- W4308668712 hasRelatedWork W3212961654 @default.
- W4308668712 hasRelatedWork W4213033583 @default.
- W4308668712 hasRelatedWork W4287763734 @default.
- W4308668712 hasRelatedWork W4294690151 @default.
- W4308668712 isParatext "false" @default.
- W4308668712 isRetracted "false" @default.
- W4308668712 workType "article" @default.