Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308679206> ?p ?o ?g. }
- W4308679206 endingPage "245015" @default.
- W4308679206 startingPage "245015" @default.
- W4308679206 abstract "Abstract Objective. Deep neural network (DNN) based methods have shown promising performances for low-dose computed tomography (LDCT) imaging. However, most of the DNN-based methods are trained on simulated labeled datasets, and the low-dose simulation algorithms are usually designed based on simple statistical models which deviate from the real clinical scenarios, which could lead to issues of overfitting, instability and poor robustness. To address these issues, in this work, we present a structure-preserved meta-learning uniting network (shorten as ‘SMU-Net’) to suppress noise-induced artifacts and preserve structure details in the unlabeled LDCT imaging task in real scenarios. Approach. Specifically, the presented SMU-Net contains two networks, i.e., teacher network and student network. The teacher network is trained on simulated labeled dataset and then helps the student network train with the unlabeled LDCT images via the meta-learning strategy. The student network is trained on real LDCT dataset with the pseudo-labels generated by the teacher network. Moreover, the student network adopts the Co-teaching strategy to improve the robustness of the presented SMU-Net. Main results. We validate the proposed SMU-Net method on three public datasets and one real low-dose dataset. The visual image results indicate that the proposed SMU-Net has superior performance on reducing noise-induced artifacts and preserving structure details. And the quantitative results exhibit that the presented SMU-Net method generally obtains the highest signal-to-noise ratio (PSNR), the highest structural similarity index measurement (SSIM), and the lowest root-mean-square error (RMSE) values or the lowest natural image quality evaluator (NIQE) scores. Significance. We propose a meta learning strategy to obtain high-quality CT images in the LDCT imaging task, which is designed to take advantage of unlabeled CT images to promote the reconstruction performance in the LDCT environments." @default.
- W4308679206 created "2022-11-14" @default.
- W4308679206 creator A5006049117 @default.
- W4308679206 creator A5006790671 @default.
- W4308679206 creator A5008476540 @default.
- W4308679206 creator A5024645254 @default.
- W4308679206 creator A5041034868 @default.
- W4308679206 creator A5061369870 @default.
- W4308679206 creator A5085296684 @default.
- W4308679206 date "2022-12-12" @default.
- W4308679206 modified "2023-09-27" @default.
- W4308679206 title "Structure-preserved meta-learning uniting network for improving low-dose CT quality" @default.
- W4308679206 cites W2102166818 @default.
- W4308679206 cites W2133665775 @default.
- W4308679206 cites W2141689871 @default.
- W4308679206 cites W2508457857 @default.
- W4308679206 cites W2584483805 @default.
- W4308679206 cites W2743780012 @default.
- W4308679206 cites W2766327008 @default.
- W4308679206 cites W2793419304 @default.
- W4308679206 cites W2803224943 @default.
- W4308679206 cites W2887746098 @default.
- W4308679206 cites W2893497937 @default.
- W4308679206 cites W2911290743 @default.
- W4308679206 cites W2963392702 @default.
- W4308679206 cites W3002137088 @default.
- W4308679206 cites W3012519865 @default.
- W4308679206 cites W3015470883 @default.
- W4308679206 cites W3034797671 @default.
- W4308679206 cites W3035598431 @default.
- W4308679206 cites W3099334623 @default.
- W4308679206 cites W3100000627 @default.
- W4308679206 cites W3103645830 @default.
- W4308679206 cites W3104324122 @default.
- W4308679206 cites W3127808184 @default.
- W4308679206 cites W3134567126 @default.
- W4308679206 cites W3164931469 @default.
- W4308679206 cites W3165310467 @default.
- W4308679206 cites W3167939439 @default.
- W4308679206 cites W3172797549 @default.
- W4308679206 cites W3180514382 @default.
- W4308679206 cites W3196413773 @default.
- W4308679206 cites W4200145257 @default.
- W4308679206 cites W4220936665 @default.
- W4308679206 cites W4225243441 @default.
- W4308679206 cites W4283324694 @default.
- W4308679206 cites W4285043962 @default.
- W4308679206 cites W4290715421 @default.
- W4308679206 cites W4293162124 @default.
- W4308679206 doi "https://doi.org/10.1088/1361-6560/aca194" @default.
- W4308679206 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36351294" @default.
- W4308679206 hasPublicationYear "2022" @default.
- W4308679206 type Work @default.
- W4308679206 citedByCount "0" @default.
- W4308679206 crossrefType "journal-article" @default.
- W4308679206 hasAuthorship W4308679206A5006049117 @default.
- W4308679206 hasAuthorship W4308679206A5006790671 @default.
- W4308679206 hasAuthorship W4308679206A5008476540 @default.
- W4308679206 hasAuthorship W4308679206A5024645254 @default.
- W4308679206 hasAuthorship W4308679206A5041034868 @default.
- W4308679206 hasAuthorship W4308679206A5061369870 @default.
- W4308679206 hasAuthorship W4308679206A5085296684 @default.
- W4308679206 hasConcept C103278499 @default.
- W4308679206 hasConcept C104317684 @default.
- W4308679206 hasConcept C105795698 @default.
- W4308679206 hasConcept C108583219 @default.
- W4308679206 hasConcept C115961682 @default.
- W4308679206 hasConcept C119857082 @default.
- W4308679206 hasConcept C124101348 @default.
- W4308679206 hasConcept C139945424 @default.
- W4308679206 hasConcept C153180895 @default.
- W4308679206 hasConcept C154945302 @default.
- W4308679206 hasConcept C185592680 @default.
- W4308679206 hasConcept C22019652 @default.
- W4308679206 hasConcept C33923547 @default.
- W4308679206 hasConcept C41008148 @default.
- W4308679206 hasConcept C50644808 @default.
- W4308679206 hasConcept C55493867 @default.
- W4308679206 hasConcept C63479239 @default.
- W4308679206 hasConcept C99498987 @default.
- W4308679206 hasConceptScore W4308679206C103278499 @default.
- W4308679206 hasConceptScore W4308679206C104317684 @default.
- W4308679206 hasConceptScore W4308679206C105795698 @default.
- W4308679206 hasConceptScore W4308679206C108583219 @default.
- W4308679206 hasConceptScore W4308679206C115961682 @default.
- W4308679206 hasConceptScore W4308679206C119857082 @default.
- W4308679206 hasConceptScore W4308679206C124101348 @default.
- W4308679206 hasConceptScore W4308679206C139945424 @default.
- W4308679206 hasConceptScore W4308679206C153180895 @default.
- W4308679206 hasConceptScore W4308679206C154945302 @default.
- W4308679206 hasConceptScore W4308679206C185592680 @default.
- W4308679206 hasConceptScore W4308679206C22019652 @default.
- W4308679206 hasConceptScore W4308679206C33923547 @default.
- W4308679206 hasConceptScore W4308679206C41008148 @default.
- W4308679206 hasConceptScore W4308679206C50644808 @default.
- W4308679206 hasConceptScore W4308679206C55493867 @default.
- W4308679206 hasConceptScore W4308679206C63479239 @default.
- W4308679206 hasConceptScore W4308679206C99498987 @default.