Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308679216> ?p ?o ?g. }
- W4308679216 endingPage "1125" @default.
- W4308679216 startingPage "1118" @default.
- W4308679216 abstract "Cistanche tubulosa, as a homology of medicine and food, not only has a unique medicinal value but also is widely used in healthcare products. Polysaccharide is one of its important quality indicators.In this study, an analytical model based on near-infrared (NIR) spectroscopy combined with machine learning was established to predict the polysaccharide content of C. tubulosa.The polysaccharide content in the samples determined by the phenol-sulfuric acid method was used as a reference value, and machine learning was applied to relate the spectral information to the reference value. Dividing the samples into a calibration set and a prediction set using the Kennard-Stone algorithm. The model was optimized by various preprocessing methods, including Savitzky-Golay (SG), standard normal variate (SNV), multiple scattering correction (MSC), first-order derivative (FD), second-order derivative (SD), and combinations of them. Variable selection was performed through the successive projections algorithm (SPA) and stability competitive adaptive reweighted sampling (sCARS). Four machine learning models were used to build quantitative models, including the random forest (RF), partial least-squares (PLS), principal component regression (PCR), and support vector machine (SVM). The evaluation indexes of the model were the coefficient of determination (R2), root-mean-square error (RMSE), and residual prediction deviation (RPD).RF performs best among the four machine learning models. R2c (calibration set coefficient of determination) and RMSEC (root mean square error of the calibration set), %, were 0.9763. and 0.3527 for calibration, respectively. R2p (prediction set coefficient of determination), RMSEP (root mean square error of the prediction set), %, and RPD were 0.9230, 0.5130, and 3.33 for prediction, respectively.The results indicate that NIR combined with the RF is an effective method applied to the quality evaluation of the polysaccharides of C. tubulosa.Four quantitative models were developed to predict the polysaccharide content in C. tubulosa, and good results were obtained. The characteristic variables were basically determined by the sCARS algorithm, and the corresponding characteristic groups were analyzed." @default.
- W4308679216 created "2022-11-14" @default.
- W4308679216 creator A5009877586 @default.
- W4308679216 creator A5015985485 @default.
- W4308679216 creator A5043198858 @default.
- W4308679216 creator A5056961959 @default.
- W4308679216 creator A5057338674 @default.
- W4308679216 creator A5080230045 @default.
- W4308679216 date "2022-11-10" @default.
- W4308679216 modified "2023-09-26" @default.
- W4308679216 title "Rapid Determination of Polysaccharides in <i>Cistanche Tubulosa</i> Using Near-Infrared Spectroscopy Combined with Machine Learning" @default.
- W4308679216 cites W1544267247 @default.
- W4308679216 cites W1937577205 @default.
- W4308679216 cites W1981594542 @default.
- W4308679216 cites W1992648276 @default.
- W4308679216 cites W2005397735 @default.
- W4308679216 cites W2012210188 @default.
- W4308679216 cites W2012358846 @default.
- W4308679216 cites W2027835374 @default.
- W4308679216 cites W2038744910 @default.
- W4308679216 cites W2041831423 @default.
- W4308679216 cites W2066536516 @default.
- W4308679216 cites W2084668230 @default.
- W4308679216 cites W2171065300 @default.
- W4308679216 cites W2235108757 @default.
- W4308679216 cites W2317582304 @default.
- W4308679216 cites W2341832424 @default.
- W4308679216 cites W2509488123 @default.
- W4308679216 cites W2775745878 @default.
- W4308679216 cites W2955161654 @default.
- W4308679216 cites W2986708336 @default.
- W4308679216 cites W3012422646 @default.
- W4308679216 cites W3021075489 @default.
- W4308679216 cites W3036329560 @default.
- W4308679216 cites W3046262077 @default.
- W4308679216 cites W3080221789 @default.
- W4308679216 cites W3126999187 @default.
- W4308679216 cites W3141176302 @default.
- W4308679216 cites W3180337606 @default.
- W4308679216 cites W4205966472 @default.
- W4308679216 cites W4210422315 @default.
- W4308679216 cites W4213270320 @default.
- W4308679216 cites W4213444529 @default.
- W4308679216 cites W4223931956 @default.
- W4308679216 cites W1973014709 @default.
- W4308679216 doi "https://doi.org/10.1093/jaoacint/qsac144" @default.
- W4308679216 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36355447" @default.
- W4308679216 hasPublicationYear "2022" @default.
- W4308679216 type Work @default.
- W4308679216 citedByCount "0" @default.
- W4308679216 crossrefType "journal-article" @default.
- W4308679216 hasAuthorship W4308679216A5009877586 @default.
- W4308679216 hasAuthorship W4308679216A5015985485 @default.
- W4308679216 hasAuthorship W4308679216A5043198858 @default.
- W4308679216 hasAuthorship W4308679216A5056961959 @default.
- W4308679216 hasAuthorship W4308679216A5057338674 @default.
- W4308679216 hasAuthorship W4308679216A5080230045 @default.
- W4308679216 hasConcept C105795698 @default.
- W4308679216 hasConcept C121332964 @default.
- W4308679216 hasConcept C12267149 @default.
- W4308679216 hasConcept C128990827 @default.
- W4308679216 hasConcept C139945424 @default.
- W4308679216 hasConcept C153180895 @default.
- W4308679216 hasConcept C154945302 @default.
- W4308679216 hasConcept C165838908 @default.
- W4308679216 hasConcept C186060115 @default.
- W4308679216 hasConcept C22354355 @default.
- W4308679216 hasConcept C27438332 @default.
- W4308679216 hasConcept C2780092901 @default.
- W4308679216 hasConcept C33923547 @default.
- W4308679216 hasConcept C41008148 @default.
- W4308679216 hasConcept C62520636 @default.
- W4308679216 hasConcept C71907059 @default.
- W4308679216 hasConcept C74887250 @default.
- W4308679216 hasConcept C86803240 @default.
- W4308679216 hasConceptScore W4308679216C105795698 @default.
- W4308679216 hasConceptScore W4308679216C121332964 @default.
- W4308679216 hasConceptScore W4308679216C12267149 @default.
- W4308679216 hasConceptScore W4308679216C128990827 @default.
- W4308679216 hasConceptScore W4308679216C139945424 @default.
- W4308679216 hasConceptScore W4308679216C153180895 @default.
- W4308679216 hasConceptScore W4308679216C154945302 @default.
- W4308679216 hasConceptScore W4308679216C165838908 @default.
- W4308679216 hasConceptScore W4308679216C186060115 @default.
- W4308679216 hasConceptScore W4308679216C22354355 @default.
- W4308679216 hasConceptScore W4308679216C27438332 @default.
- W4308679216 hasConceptScore W4308679216C2780092901 @default.
- W4308679216 hasConceptScore W4308679216C33923547 @default.
- W4308679216 hasConceptScore W4308679216C41008148 @default.
- W4308679216 hasConceptScore W4308679216C62520636 @default.
- W4308679216 hasConceptScore W4308679216C71907059 @default.
- W4308679216 hasConceptScore W4308679216C74887250 @default.
- W4308679216 hasConceptScore W4308679216C86803240 @default.
- W4308679216 hasIssue "4" @default.
- W4308679216 hasLocation W43086792161 @default.
- W4308679216 hasLocation W43086792162 @default.
- W4308679216 hasOpenAccess W4308679216 @default.
- W4308679216 hasPrimaryLocation W43086792161 @default.