Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308683208> ?p ?o ?g. }
- W4308683208 abstract "To evaluate the feasibility of folded image training strategy (FITS) and the quality of images reconstructed using the improved model-based deep learning (iMoDL) network trained with FITS (FITS-iMoDL) for abdominal MR imaging.This retrospective study included abdominal 3D T1-weighted images of 122 patients. In the experimental analyses, peak SNR (PSNR) and structure similarity index (SSIM) of images reconstructed with FITS-iMoDL were compared with those with the following reconstruction methods: conventional model-based deep learning (conv-MoDL), MoDL trained with FITS (FITS-MoDL), total variation regularized compressed sensing (CS), and parallel imaging (CG-SENSE). In the clinical analysis, SNR and image contrast were measured on the reference, FITS-iMoDL, and CS images. Three radiologists evaluated the image quality using a 5-point scale to determine the mean opinion score (MOS).The PSNR of FITS-iMoDL was significantly higher than that of FITS-MoDL, conv-MoDL, CS, and CG-SENSE (P < 0.001). The SSIM of FITS-iMoDL was significantly higher than those of the others (P < 0.001), except for FITS-MoDL (P = 0.056). In the clinical analysis, the SNR of FITS-iMoDL was significantly higher than that of the reference and CS (P < 0.0001). Image contrast was equivalent within an equivalence margin of 10% among these three image sets (P < 0.0001). MOS was significantly improved in FITS-iMoDL (P < 0.001) compared with CS images in terms of liver edge and vessels conspicuity, lesion depiction, artifacts, blurring, and overall image quality.The proposed method, FITS-iMoDL, allowed a deeper MoDL reconstruction network without increasing memory consumption and improved image quality on abdominal 3D T1-weighted imaging compared with CS images." @default.
- W4308683208 created "2022-11-14" @default.
- W4308683208 creator A5008248425 @default.
- W4308683208 creator A5014464563 @default.
- W4308683208 creator A5028300172 @default.
- W4308683208 creator A5037423839 @default.
- W4308683208 creator A5081837886 @default.
- W4308683208 creator A5085959935 @default.
- W4308683208 date "2022-01-01" @default.
- W4308683208 modified "2023-10-07" @default.
- W4308683208 title "Model-based Deep Learning Reconstruction Using a Folded Image Training Strategy for Abdominal 3D T1-weighted Imaging" @default.
- W4308683208 cites W1526743513 @default.
- W4308683208 cites W1907337775 @default.
- W4308683208 cites W1931067464 @default.
- W4308683208 cites W1999584433 @default.
- W4308683208 cites W2027937852 @default.
- W4308683208 cites W2101675075 @default.
- W4308683208 cites W2117649283 @default.
- W4308683208 cites W2117700900 @default.
- W4308683208 cites W2142876870 @default.
- W4308683208 cites W2145020729 @default.
- W4308683208 cites W2147770000 @default.
- W4308683208 cites W2151354228 @default.
- W4308683208 cites W2155369619 @default.
- W4308683208 cites W2171173122 @default.
- W4308683208 cites W2230325455 @default.
- W4308683208 cites W2336411511 @default.
- W4308683208 cites W2594014149 @default.
- W4308683208 cites W2604388535 @default.
- W4308683208 cites W2901198245 @default.
- W4308683208 cites W2901517136 @default.
- W4308683208 cites W2911290743 @default.
- W4308683208 cites W2917198195 @default.
- W4308683208 cites W2922528425 @default.
- W4308683208 cites W2941219400 @default.
- W4308683208 cites W2944761405 @default.
- W4308683208 cites W2956625312 @default.
- W4308683208 cites W2959810249 @default.
- W4308683208 cites W2963321204 @default.
- W4308683208 cites W2971983564 @default.
- W4308683208 cites W3005602666 @default.
- W4308683208 cites W3005709683 @default.
- W4308683208 cites W3010165905 @default.
- W4308683208 cites W3023712588 @default.
- W4308683208 cites W3081961710 @default.
- W4308683208 cites W3088017310 @default.
- W4308683208 cites W3094421355 @default.
- W4308683208 cites W3100730608 @default.
- W4308683208 cites W3103452973 @default.
- W4308683208 cites W3105403262 @default.
- W4308683208 cites W3106483347 @default.
- W4308683208 doi "https://doi.org/10.2463/mrms.mp.2021-0103" @default.
- W4308683208 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36351603" @default.
- W4308683208 hasPublicationYear "2022" @default.
- W4308683208 type Work @default.
- W4308683208 citedByCount "0" @default.
- W4308683208 crossrefType "journal-article" @default.
- W4308683208 hasAuthorship W4308683208A5008248425 @default.
- W4308683208 hasAuthorship W4308683208A5014464563 @default.
- W4308683208 hasAuthorship W4308683208A5028300172 @default.
- W4308683208 hasAuthorship W4308683208A5037423839 @default.
- W4308683208 hasAuthorship W4308683208A5081837886 @default.
- W4308683208 hasAuthorship W4308683208A5085959935 @default.
- W4308683208 hasBestOaLocation W43086832081 @default.
- W4308683208 hasConcept C103278499 @default.
- W4308683208 hasConcept C115961682 @default.
- W4308683208 hasConcept C119857082 @default.
- W4308683208 hasConcept C126838900 @default.
- W4308683208 hasConcept C141379421 @default.
- W4308683208 hasConcept C153180895 @default.
- W4308683208 hasConcept C154945302 @default.
- W4308683208 hasConcept C2776502983 @default.
- W4308683208 hasConcept C2989005 @default.
- W4308683208 hasConcept C31972630 @default.
- W4308683208 hasConcept C41008148 @default.
- W4308683208 hasConcept C55020928 @default.
- W4308683208 hasConcept C71924100 @default.
- W4308683208 hasConcept C774472 @default.
- W4308683208 hasConceptScore W4308683208C103278499 @default.
- W4308683208 hasConceptScore W4308683208C115961682 @default.
- W4308683208 hasConceptScore W4308683208C119857082 @default.
- W4308683208 hasConceptScore W4308683208C126838900 @default.
- W4308683208 hasConceptScore W4308683208C141379421 @default.
- W4308683208 hasConceptScore W4308683208C153180895 @default.
- W4308683208 hasConceptScore W4308683208C154945302 @default.
- W4308683208 hasConceptScore W4308683208C2776502983 @default.
- W4308683208 hasConceptScore W4308683208C2989005 @default.
- W4308683208 hasConceptScore W4308683208C31972630 @default.
- W4308683208 hasConceptScore W4308683208C41008148 @default.
- W4308683208 hasConceptScore W4308683208C55020928 @default.
- W4308683208 hasConceptScore W4308683208C71924100 @default.
- W4308683208 hasConceptScore W4308683208C774472 @default.
- W4308683208 hasLocation W43086832081 @default.
- W4308683208 hasLocation W43086832082 @default.
- W4308683208 hasOpenAccess W4308683208 @default.
- W4308683208 hasPrimaryLocation W43086832081 @default.
- W4308683208 hasRelatedWork W1963814553 @default.
- W4308683208 hasRelatedWork W1988158806 @default.
- W4308683208 hasRelatedWork W1995070803 @default.
- W4308683208 hasRelatedWork W2018015402 @default.