Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308683430> ?p ?o ?g. }
- W4308683430 endingPage "3506" @default.
- W4308683430 startingPage "3495" @default.
- W4308683430 abstract "ConspectusDNA repair enzymes continuously provide surveillance throughout our cells, protecting the enclosed DNA from the damage that is constantly arising from oxidation, alkylating species, and radiation. Members of this enzyme class are intimately linked to pathways controlling cancer and inflammation and are promising targets for diagnostics and future therapies. Their study is benefiting widely from the development of new tools and methods aimed at measuring their activities. Here, we provide an Account of our laboratory’s work on developing chemical tools to study DNA repair processes in vitro, as well as in cells and tissues, and what we have learned by applying them.We first outline early work probing how DNA repair enzymes recognize specific forms of damage by use of chemical analogs of the damage with altered shapes and H-bonding abilities. One outcome of this was the development of an unnatural DNA base that is incorporated selectively by polymerase enzymes opposite sites of missing bases (abasic sites) in DNA, a very common form of damage.We then describe strategies for design of fluorescent probes targeted to base excision repair (BER) enzymes; these were built from small synthetic DNAs incorporating fluorescent moieties to engender light-up signals as the enzymatic reaction proceeds. Examples of targets for these DNA probes include UDG, SMUG1, Fpg, OGG1, MutYH, ALKBH2, ALKBH3, MTH1, and NTH1. Several such strategies were successful and were applied both in vitro and in cellular settings; moreover, some were used to discover small-molecule modulators of specific repair enzymes. One of these is the compound SU0268, a potent OGG1 inhibitor that is under investigation in animal models for inhibiting hyperinflammatory responses.To investigate cellular nucleotide sanitation pathways, we designed a series of “two-headed” nucleotides containing a damaged DNA nucleotide at one end and ATP at the other; these were applied to studying the three human sanitation enzymes MTH1, dUTPase, and dITPase, some of which are therapeutic targets. The MTH1 probe (ARGO) was used in collaboration with oncologists to measure the enzyme in tumors as a disease marker and also to develop the first small-molecule activators of the enzyme.We proceed to discuss the development of a “universal” probe of base excision repair processes (UBER), which reacts covalently with abasic site intermediates of base excision repair. UBER probes light up in real time as the reaction occurs, enabling the observation of base excision repair as it occurs in live cells and tissues. UBER probes can also be used in efficient and simple methods for fluorescent labeling of DNA. Finally, we suggest interesting directions for the future of this field in biomedicine and human health." @default.
- W4308683430 created "2022-11-14" @default.
- W4308683430 creator A5060666792 @default.
- W4308683430 creator A5078529502 @default.
- W4308683430 date "2022-11-10" @default.
- W4308683430 modified "2023-09-24" @default.
- W4308683430 title "Chemical Tools for the Study of DNA Repair" @default.
- W4308683430 cites W1511852170 @default.
- W4308683430 cites W1919611319 @default.
- W4308683430 cites W1964869773 @default.
- W4308683430 cites W1968894315 @default.
- W4308683430 cites W1969420417 @default.
- W4308683430 cites W1971452540 @default.
- W4308683430 cites W1974952918 @default.
- W4308683430 cites W1976385056 @default.
- W4308683430 cites W1979020998 @default.
- W4308683430 cites W1986495208 @default.
- W4308683430 cites W1990495935 @default.
- W4308683430 cites W1997203477 @default.
- W4308683430 cites W2001676393 @default.
- W4308683430 cites W2003222358 @default.
- W4308683430 cites W2004142027 @default.
- W4308683430 cites W2026776398 @default.
- W4308683430 cites W2027098629 @default.
- W4308683430 cites W2037898576 @default.
- W4308683430 cites W2038212913 @default.
- W4308683430 cites W2043628429 @default.
- W4308683430 cites W2043697653 @default.
- W4308683430 cites W2046387060 @default.
- W4308683430 cites W2050658928 @default.
- W4308683430 cites W2057213837 @default.
- W4308683430 cites W2060021176 @default.
- W4308683430 cites W2068013513 @default.
- W4308683430 cites W2071411482 @default.
- W4308683430 cites W2073791969 @default.
- W4308683430 cites W2073880037 @default.
- W4308683430 cites W2074730941 @default.
- W4308683430 cites W2083960841 @default.
- W4308683430 cites W2084060660 @default.
- W4308683430 cites W2086398516 @default.
- W4308683430 cites W2087290238 @default.
- W4308683430 cites W2097997319 @default.
- W4308683430 cites W2103499809 @default.
- W4308683430 cites W2133297652 @default.
- W4308683430 cites W2134440723 @default.
- W4308683430 cites W2140126848 @default.
- W4308683430 cites W2146217734 @default.
- W4308683430 cites W2162059658 @default.
- W4308683430 cites W2171972386 @default.
- W4308683430 cites W2212776653 @default.
- W4308683430 cites W2295682363 @default.
- W4308683430 cites W2329020226 @default.
- W4308683430 cites W2329868718 @default.
- W4308683430 cites W2397885961 @default.
- W4308683430 cites W2472872250 @default.
- W4308683430 cites W2553658634 @default.
- W4308683430 cites W2562712448 @default.
- W4308683430 cites W2612974116 @default.
- W4308683430 cites W2740561900 @default.
- W4308683430 cites W2755086625 @default.
- W4308683430 cites W2760393414 @default.
- W4308683430 cites W2769128253 @default.
- W4308683430 cites W2785310437 @default.
- W4308683430 cites W2793173984 @default.
- W4308683430 cites W2795875233 @default.
- W4308683430 cites W2805889381 @default.
- W4308683430 cites W2901500625 @default.
- W4308683430 cites W2911653212 @default.
- W4308683430 cites W2951366277 @default.
- W4308683430 cites W2955594941 @default.
- W4308683430 cites W2963141093 @default.
- W4308683430 cites W2971226421 @default.
- W4308683430 cites W2990244886 @default.
- W4308683430 cites W3013152369 @default.
- W4308683430 cites W3021187015 @default.
- W4308683430 cites W3032665916 @default.
- W4308683430 cites W3044386921 @default.
- W4308683430 cites W3082584614 @default.
- W4308683430 cites W3084815361 @default.
- W4308683430 cites W3137642284 @default.
- W4308683430 cites W3172303857 @default.
- W4308683430 cites W3214629092 @default.
- W4308683430 cites W3217666405 @default.
- W4308683430 cites W4200073877 @default.
- W4308683430 cites W4236844215 @default.
- W4308683430 cites W4249657455 @default.
- W4308683430 cites W4253228267 @default.
- W4308683430 cites W4283319988 @default.
- W4308683430 cites W4285391671 @default.
- W4308683430 cites W4293116031 @default.
- W4308683430 cites W765687508 @default.
- W4308683430 doi "https://doi.org/10.1021/acs.accounts.2c00608" @default.
- W4308683430 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36355579" @default.
- W4308683430 hasPublicationYear "2022" @default.
- W4308683430 type Work @default.
- W4308683430 citedByCount "1" @default.
- W4308683430 countsByYear W43086834302023 @default.
- W4308683430 crossrefType "journal-article" @default.