Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308684105> ?p ?o ?g. }
- W4308684105 endingPage "e1044" @default.
- W4308684105 startingPage "e1044" @default.
- W4308684105 abstract "The collection of increasing amounts of data in health care has become relevant for pain therapy and research. This poses problems for analyses with classical approaches, which is why artificial intelligence (AI) and machine learning (ML) methods are being included into pain research. The current literature on AI and ML in the context of pain research was automatically searched and manually curated. Common machine learning methods and pain settings covered were evaluated. Further focus was on the origin of the publication and technical details, such as the included sample sizes of the studies analyzed with ML. Machine learning was identified in 475 publications from 18 countries, with 79% of the studies published since 2019. Most addressed pain conditions included low back pain, musculoskeletal disorders, osteoarthritis, neuropathic pain, and inflammatory pain. Most used ML algorithms included random forests and support vector machines; however, deep learning was used when medical images were involved in the diagnosis of painful conditions. Cohort sizes ranged from 11 to 2,164,872, with a mode at n = 100; however, deep learning required larger data sets often only available from medical images. Artificial intelligence and ML, in particular, are increasingly being applied to pain-related data. This report presents application examples and highlights advantages and limitations, such as the ability to process complex data, sometimes, but not always, at the cost of big data requirements or black-box decisions." @default.
- W4308684105 created "2022-11-14" @default.
- W4308684105 creator A5073863447 @default.
- W4308684105 creator A5078097779 @default.
- W4308684105 creator A5079793229 @default.
- W4308684105 creator A5090927399 @default.
- W4308684105 date "2022-11-01" @default.
- W4308684105 modified "2023-10-11" @default.
- W4308684105 title "Artificial intelligence and machine learning in pain research: a data scientometric analysis" @default.
- W4308684105 cites W1498436455 @default.
- W4308684105 cites W1995341919 @default.
- W4308684105 cites W2016381774 @default.
- W4308684105 cites W2023057403 @default.
- W4308684105 cites W2037791777 @default.
- W4308684105 cites W2043674042 @default.
- W4308684105 cites W2049755028 @default.
- W4308684105 cites W2071802762 @default.
- W4308684105 cites W2075894130 @default.
- W4308684105 cites W2076653261 @default.
- W4308684105 cites W2092700657 @default.
- W4308684105 cites W2100495367 @default.
- W4308684105 cites W2103017472 @default.
- W4308684105 cites W2103496339 @default.
- W4308684105 cites W2105795805 @default.
- W4308684105 cites W2107726111 @default.
- W4308684105 cites W2119387367 @default.
- W4308684105 cites W2122111042 @default.
- W4308684105 cites W2136922672 @default.
- W4308684105 cites W2151480498 @default.
- W4308684105 cites W2156665896 @default.
- W4308684105 cites W2294798173 @default.
- W4308684105 cites W2332560665 @default.
- W4308684105 cites W2539414263 @default.
- W4308684105 cites W2562415598 @default.
- W4308684105 cites W2601243251 @default.
- W4308684105 cites W2767891136 @default.
- W4308684105 cites W2770346636 @default.
- W4308684105 cites W2793748701 @default.
- W4308684105 cites W2799327960 @default.
- W4308684105 cites W2806151371 @default.
- W4308684105 cites W2809369846 @default.
- W4308684105 cites W2887867491 @default.
- W4308684105 cites W2893240169 @default.
- W4308684105 cites W2902212164 @default.
- W4308684105 cites W2902525495 @default.
- W4308684105 cites W2904785914 @default.
- W4308684105 cites W2911964244 @default.
- W4308684105 cites W2920092544 @default.
- W4308684105 cites W2955599831 @default.
- W4308684105 cites W2996741674 @default.
- W4308684105 cites W3016108274 @default.
- W4308684105 cites W3018856039 @default.
- W4308684105 cites W3093388566 @default.
- W4308684105 cites W3093859478 @default.
- W4308684105 cites W3112211262 @default.
- W4308684105 cites W3121044953 @default.
- W4308684105 cites W3121961986 @default.
- W4308684105 cites W3200983411 @default.
- W4308684105 cites W3202352112 @default.
- W4308684105 cites W3213777593 @default.
- W4308684105 cites W3217240351 @default.
- W4308684105 cites W4200102484 @default.
- W4308684105 cites W4205391205 @default.
- W4308684105 cites W4205947740 @default.
- W4308684105 cites W4210426558 @default.
- W4308684105 cites W4220825165 @default.
- W4308684105 cites W4221106857 @default.
- W4308684105 cites W4238805501 @default.
- W4308684105 cites W4239510810 @default.
- W4308684105 cites W4247590281 @default.
- W4308684105 cites W4282979907 @default.
- W4308684105 cites W4283272038 @default.
- W4308684105 cites W4287508354 @default.
- W4308684105 cites W65738273 @default.
- W4308684105 doi "https://doi.org/10.1097/pr9.0000000000001044" @default.
- W4308684105 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36348668" @default.
- W4308684105 hasPublicationYear "2022" @default.
- W4308684105 type Work @default.
- W4308684105 citedByCount "6" @default.
- W4308684105 countsByYear W43086841052023 @default.
- W4308684105 crossrefType "journal-article" @default.
- W4308684105 hasAuthorship W4308684105A5073863447 @default.
- W4308684105 hasAuthorship W4308684105A5078097779 @default.
- W4308684105 hasAuthorship W4308684105A5079793229 @default.
- W4308684105 hasAuthorship W4308684105A5090927399 @default.
- W4308684105 hasBestOaLocation W43086841051 @default.
- W4308684105 hasConcept C105795698 @default.
- W4308684105 hasConcept C108583219 @default.
- W4308684105 hasConcept C119857082 @default.
- W4308684105 hasConcept C12267149 @default.
- W4308684105 hasConcept C124101348 @default.
- W4308684105 hasConcept C133462117 @default.
- W4308684105 hasConcept C151730666 @default.
- W4308684105 hasConcept C154945302 @default.
- W4308684105 hasConcept C2779343474 @default.
- W4308684105 hasConcept C33923547 @default.
- W4308684105 hasConcept C41008148 @default.
- W4308684105 hasConcept C71924100 @default.