Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308685890> ?p ?o ?g. }
- W4308685890 abstract "Abstract Although reducing criminal outcomes in individuals with mental illness have long been a priority for governments worldwide, there is still a lack of objective and highly accurate tools that can predict these events at an individual level. Predictive machine learning models may provide a unique opportunity to identify those at the highest risk of criminal activity and facilitate personalized rehabilitation strategies. Therefore, this systematic review and meta-analysis aims to describe the diagnostic accuracy of studies using machine learning techniques to predict criminal and violent outcomes in psychiatry. We performed meta-analyses using the mada, meta, and dmetatools packages in R to predict criminal and violent outcomes in psychiatric patients ( n = 2428) (Registration Number: CRD42019127169) by searching PubMed, Scopus, and Web of Science for articles published in any language up to April 2022. Twenty studies were included in the systematic review. Overall, studies used single-nucleotide polymorphisms, text analysis, psychometric scales, hospital records, and resting-state regional cerebral blood flow to build predictive models. Of the studies described in the systematic review, nine were included in the present meta-analysis. The area under the curve (AUC) for predicting violent and criminal outcomes in psychiatry was 0.816 (95% Confidence Interval (CI): 70.57–88.15), with a partial AUC of 0.773, and average sensitivity of 73.33% (95% CI: 64.09–79.63), and average specificity of 72.90% (95% CI: 63.98–79.66), respectively. Furthermore, the pooled accuracy across models was 71.45% (95% CI: 60.88–83.86), with a tau squared (τ 2 ) of 0.0424 (95% CI: 0.0184–0.1553). Based on available evidence, we suggest that prospective models include evidence-based risk factors identified in prior actuarial models. Moreover, there is a need for a greater emphasis on identifying biological features and incorporating novel variables which have not been explored in prior literature. Furthermore, available models remain preliminary, and prospective validation with independent datasets, and across cultures, will be required prior to clinical implementation. Nonetheless, predictive machine learning models hold promise in providing clinicians and researchers with actionable tools to improve how we prevent, detect, or intervene in relevant crime and violent-related outcomes in psychiatry." @default.
- W4308685890 created "2022-11-14" @default.
- W4308685890 creator A5000802855 @default.
- W4308685890 creator A5011626850 @default.
- W4308685890 creator A5014490460 @default.
- W4308685890 creator A5032281281 @default.
- W4308685890 creator A5045021560 @default.
- W4308685890 creator A5046004809 @default.
- W4308685890 creator A5047375749 @default.
- W4308685890 creator A5060036937 @default.
- W4308685890 creator A5066511141 @default.
- W4308685890 date "2022-11-09" @default.
- W4308685890 modified "2023-10-18" @default.
- W4308685890 title "Predicting criminal and violent outcomes in psychiatry: a meta-analysis of diagnostic accuracy" @default.
- W4308685890 cites W1583031633 @default.
- W4308685890 cites W1847033250 @default.
- W4308685890 cites W1979609482 @default.
- W4308685890 cites W2021593215 @default.
- W4308685890 cites W2024265699 @default.
- W4308685890 cites W2036756589 @default.
- W4308685890 cites W2067533265 @default.
- W4308685890 cites W2068560144 @default.
- W4308685890 cites W2073253107 @default.
- W4308685890 cites W2087203533 @default.
- W4308685890 cites W2091299818 @default.
- W4308685890 cites W2092926517 @default.
- W4308685890 cites W2101807845 @default.
- W4308685890 cites W2107328434 @default.
- W4308685890 cites W2119140893 @default.
- W4308685890 cites W2119525967 @default.
- W4308685890 cites W2126727011 @default.
- W4308685890 cites W2132822160 @default.
- W4308685890 cites W2154449833 @default.
- W4308685890 cites W2158112649 @default.
- W4308685890 cites W2162167273 @default.
- W4308685890 cites W2167101736 @default.
- W4308685890 cites W2225877761 @default.
- W4308685890 cites W2411403378 @default.
- W4308685890 cites W2576440140 @default.
- W4308685890 cites W2588681363 @default.
- W4308685890 cites W2726539084 @default.
- W4308685890 cites W273998642 @default.
- W4308685890 cites W2800870086 @default.
- W4308685890 cites W2808358301 @default.
- W4308685890 cites W2810349670 @default.
- W4308685890 cites W2884794618 @default.
- W4308685890 cites W2885994488 @default.
- W4308685890 cites W2891440607 @default.
- W4308685890 cites W2936086693 @default.
- W4308685890 cites W2945495213 @default.
- W4308685890 cites W2946147212 @default.
- W4308685890 cites W2955699460 @default.
- W4308685890 cites W2963389298 @default.
- W4308685890 cites W2999615587 @default.
- W4308685890 cites W3016221674 @default.
- W4308685890 cites W3017208276 @default.
- W4308685890 cites W3043189602 @default.
- W4308685890 cites W3044016175 @default.
- W4308685890 cites W306609242 @default.
- W4308685890 cites W3134891543 @default.
- W4308685890 cites W3149244341 @default.
- W4308685890 cites W4249247926 @default.
- W4308685890 cites W4300430800 @default.
- W4308685890 doi "https://doi.org/10.1038/s41398-022-02214-3" @default.
- W4308685890 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36347838" @default.
- W4308685890 hasPublicationYear "2022" @default.
- W4308685890 type Work @default.
- W4308685890 citedByCount "0" @default.
- W4308685890 crossrefType "journal-article" @default.
- W4308685890 hasAuthorship W4308685890A5000802855 @default.
- W4308685890 hasAuthorship W4308685890A5011626850 @default.
- W4308685890 hasAuthorship W4308685890A5014490460 @default.
- W4308685890 hasAuthorship W4308685890A5032281281 @default.
- W4308685890 hasAuthorship W4308685890A5045021560 @default.
- W4308685890 hasAuthorship W4308685890A5046004809 @default.
- W4308685890 hasAuthorship W4308685890A5047375749 @default.
- W4308685890 hasAuthorship W4308685890A5060036937 @default.
- W4308685890 hasAuthorship W4308685890A5066511141 @default.
- W4308685890 hasBestOaLocation W43086858901 @default.
- W4308685890 hasConcept C118552586 @default.
- W4308685890 hasConcept C126322002 @default.
- W4308685890 hasConcept C15744967 @default.
- W4308685890 hasConcept C17744445 @default.
- W4308685890 hasConcept C199539241 @default.
- W4308685890 hasConcept C2779473830 @default.
- W4308685890 hasConcept C2781035948 @default.
- W4308685890 hasConcept C44249647 @default.
- W4308685890 hasConcept C70410870 @default.
- W4308685890 hasConcept C71924100 @default.
- W4308685890 hasConcept C95190672 @default.
- W4308685890 hasConceptScore W4308685890C118552586 @default.
- W4308685890 hasConceptScore W4308685890C126322002 @default.
- W4308685890 hasConceptScore W4308685890C15744967 @default.
- W4308685890 hasConceptScore W4308685890C17744445 @default.
- W4308685890 hasConceptScore W4308685890C199539241 @default.
- W4308685890 hasConceptScore W4308685890C2779473830 @default.
- W4308685890 hasConceptScore W4308685890C2781035948 @default.
- W4308685890 hasConceptScore W4308685890C44249647 @default.
- W4308685890 hasConceptScore W4308685890C70410870 @default.
- W4308685890 hasConceptScore W4308685890C71924100 @default.