Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308686586> ?p ?o ?g. }
- W4308686586 endingPage "28" @default.
- W4308686586 startingPage "1" @default.
- W4308686586 abstract "We propose neural network layers that explicitly combine frequency and image feature representations and show that they can be used as a versatile building block for reconstruction from frequency space data. Our work is motivated by the challenges arising in MRI acquisition where the signal is a corrupted Fourier transform of the desired image. The proposed joint learning schemes enable both correction of artifacts native to the frequency space and manipulation of image space representations to reconstruct coherent image structures at every layer of the network. This is in contrast to most current deep learning approaches for image reconstruction that treat frequency and image space features separately and often operate exclusively in one of the two spaces. We demonstrate the advantages of joint convolutional learning for a variety of tasks, including motion correction, denoising, reconstruction from undersampled acquisitions, and combined undersampling and motion correction on simulated and real world multicoil MRI data. The joint models produce consistently high quality output images across all tasks and datasets. When integrated into a state of the art unrolled optimization network with physics-inspired data consistency constraints for undersampled reconstruction, the proposed architectures significantly improve the optimization landscape, which yields an order of magnitude reduction of training time. This result suggests that joint representations are particularly well suited for MRI signals in deep learning networks. Our code and pretrained models are publicly available at <a href='https://github.com/nalinimsingh/interlacer'>https://github.com/nalinimsingh/interlacer</a>." @default.
- W4308686586 created "2022-11-14" @default.
- W4308686586 creator A5021214192 @default.
- W4308686586 creator A5052421730 @default.
- W4308686586 creator A5054888342 @default.
- W4308686586 creator A5081763875 @default.
- W4308686586 creator A5091409910 @default.
- W4308686586 date "2022-06-23" @default.
- W4308686586 modified "2023-10-05" @default.
- W4308686586 title "Joint Frequency and Image Space Learning for MRI Reconstruction and Analysis" @default.
- W4308686586 cites W1559195783 @default.
- W4308686586 cites W2011344206 @default.
- W4308686586 cites W2020623316 @default.
- W4308686586 cites W2047544187 @default.
- W4308686586 cites W2061655116 @default.
- W4308686586 cites W2073660032 @default.
- W4308686586 cites W2111388536 @default.
- W4308686586 cites W2132140814 @default.
- W4308686586 cites W2133665775 @default.
- W4308686586 cites W2134886608 @default.
- W4308686586 cites W2155513557 @default.
- W4308686586 cites W2594014149 @default.
- W4308686586 cites W2604388535 @default.
- W4308686586 cites W2611467245 @default.
- W4308686586 cites W2741247953 @default.
- W4308686586 cites W2777741489 @default.
- W4308686586 cites W2778924750 @default.
- W4308686586 cites W2783834599 @default.
- W4308686586 cites W2791621240 @default.
- W4308686586 cites W2795380527 @default.
- W4308686586 cites W2889995282 @default.
- W4308686586 cites W2900936384 @default.
- W4308686586 cites W2942354470 @default.
- W4308686586 cites W2942583126 @default.
- W4308686586 cites W2945147429 @default.
- W4308686586 cites W2963682501 @default.
- W4308686586 cites W3003650457 @default.
- W4308686586 cites W3009562614 @default.
- W4308686586 cites W3100730608 @default.
- W4308686586 cites W3101240860 @default.
- W4308686586 cites W3105403262 @default.
- W4308686586 cites W3119151570 @default.
- W4308686586 cites W4221051856 @default.
- W4308686586 cites W4249760698 @default.
- W4308686586 doi "https://doi.org/10.59275/j.melba.2022-16cc" @default.
- W4308686586 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36349348" @default.
- W4308686586 hasPublicationYear "2022" @default.
- W4308686586 type Work @default.
- W4308686586 citedByCount "5" @default.
- W4308686586 countsByYear W43086865862023 @default.
- W4308686586 crossrefType "journal-article" @default.
- W4308686586 hasAuthorship W4308686586A5021214192 @default.
- W4308686586 hasAuthorship W4308686586A5052421730 @default.
- W4308686586 hasAuthorship W4308686586A5054888342 @default.
- W4308686586 hasAuthorship W4308686586A5081763875 @default.
- W4308686586 hasAuthorship W4308686586A5091409910 @default.
- W4308686586 hasBestOaLocation W43086865861 @default.
- W4308686586 hasConcept C108583219 @default.
- W4308686586 hasConcept C126838900 @default.
- W4308686586 hasConcept C127413603 @default.
- W4308686586 hasConcept C136536468 @default.
- W4308686586 hasConcept C138885662 @default.
- W4308686586 hasConcept C141379421 @default.
- W4308686586 hasConcept C143409427 @default.
- W4308686586 hasConcept C153180895 @default.
- W4308686586 hasConcept C154945302 @default.
- W4308686586 hasConcept C157787499 @default.
- W4308686586 hasConcept C170154142 @default.
- W4308686586 hasConcept C177264268 @default.
- W4308686586 hasConcept C18555067 @default.
- W4308686586 hasConcept C199360897 @default.
- W4308686586 hasConcept C2524010 @default.
- W4308686586 hasConcept C2776401178 @default.
- W4308686586 hasConcept C2776760102 @default.
- W4308686586 hasConcept C2777210771 @default.
- W4308686586 hasConcept C31972630 @default.
- W4308686586 hasConcept C33923547 @default.
- W4308686586 hasConcept C41008148 @default.
- W4308686586 hasConcept C41895202 @default.
- W4308686586 hasConcept C59404180 @default.
- W4308686586 hasConcept C71924100 @default.
- W4308686586 hasConcept C81363708 @default.
- W4308686586 hasConceptScore W4308686586C108583219 @default.
- W4308686586 hasConceptScore W4308686586C126838900 @default.
- W4308686586 hasConceptScore W4308686586C127413603 @default.
- W4308686586 hasConceptScore W4308686586C136536468 @default.
- W4308686586 hasConceptScore W4308686586C138885662 @default.
- W4308686586 hasConceptScore W4308686586C141379421 @default.
- W4308686586 hasConceptScore W4308686586C143409427 @default.
- W4308686586 hasConceptScore W4308686586C153180895 @default.
- W4308686586 hasConceptScore W4308686586C154945302 @default.
- W4308686586 hasConceptScore W4308686586C157787499 @default.
- W4308686586 hasConceptScore W4308686586C170154142 @default.
- W4308686586 hasConceptScore W4308686586C177264268 @default.
- W4308686586 hasConceptScore W4308686586C18555067 @default.
- W4308686586 hasConceptScore W4308686586C199360897 @default.
- W4308686586 hasConceptScore W4308686586C2524010 @default.
- W4308686586 hasConceptScore W4308686586C2776401178 @default.