Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308687070> ?p ?o ?g. }
- W4308687070 endingPage "30975" @default.
- W4308687070 startingPage "30962" @default.
- W4308687070 abstract "In view of the theoretical importance and huge application potential of Thermally Activated Delayed Fluorescence (TADF) materials, it is of great significance to conduct High-Throughput Virtual Screening (HTVS) on compound libraries to find TADF candidate molecules. This research focuses on the computational design of pure organic TADF molecules. By combining machine learning and quantum chemical calculations, using cheminformatics tools, and introducing the concept of selection and mutation from evolutionary theory, we have designed a computational program for HTVS of TADF molecular materials, especially the impact of selection strategy and structural mutations on the results of HTVS was explored. An initial compound library (size = 103) constructed by enumeration of typical donors and acceptors was used to evolve by successively applying selection and 10 different structural mutations. And a group fingerprint similarity (ΔMSPR) index was proposed to account for the similarity between two compound libraries with comparable sizes. Based on the computed data, we have found that the mix of selection and mutations into the evolution map does have great impact on the HTVS results: (a) except the fast mutation Sub2, all the rest of the mutations can effectively concentrate 'good' molecules in a compound library, and hence give large material abundance (typically >0.8) for high mutation generations (ng ≥ 6). (b) The mean energy gap can exhibit a fast convergent trend toward very low values, hence the studied mutations (except Sub2) can cooperate very well with the studied DA substrates to generate optimal molecules, and the group fingerprint similarity can retain high enough values for large ng, which can be associated with the apparent convergence in molecular skeletons as ng increases. (c) The distribution of skeleton frequencies for a specific mutation is generally uneven with one dominant skeleton. The overall numbers of common and generic cores for all mutations are 11 and 7 as ng = 9. Hence, in a sense, the 'optimal' skeletons seem unique and useful in realizing low energy gaps. With these observations and the development of related HTVS software, we expect to provide insight and tools to the research community of HTVS of molecular (TADF) materials." @default.
- W4308687070 created "2022-11-14" @default.
- W4308687070 creator A5008010362 @default.
- W4308687070 creator A5016414843 @default.
- W4308687070 creator A5033483386 @default.
- W4308687070 creator A5060995823 @default.
- W4308687070 creator A5063188141 @default.
- W4308687070 creator A5067320225 @default.
- W4308687070 date "2022-01-01" @default.
- W4308687070 modified "2023-10-13" @default.
- W4308687070 title "Combining machine learning and quantum chemical calculations for high-throughput virtual screening of thermally activated delayed fluorescence molecular materials: the impact of selection strategy and structural mutations" @default.
- W4308687070 cites W1659842140 @default.
- W4308687070 cites W1965207322 @default.
- W4308687070 cites W1971044734 @default.
- W4308687070 cites W1975147762 @default.
- W4308687070 cites W1983596559 @default.
- W4308687070 cites W1988037271 @default.
- W4308687070 cites W1988636074 @default.
- W4308687070 cites W1989440615 @default.
- W4308687070 cites W1991286793 @default.
- W4308687070 cites W2011301426 @default.
- W4308687070 cites W2020786104 @default.
- W4308687070 cites W2022476850 @default.
- W4308687070 cites W2029123862 @default.
- W4308687070 cites W2044834685 @default.
- W4308687070 cites W2058398316 @default.
- W4308687070 cites W2060531713 @default.
- W4308687070 cites W2077188122 @default.
- W4308687070 cites W2080635178 @default.
- W4308687070 cites W2092157292 @default.
- W4308687070 cites W2094568831 @default.
- W4308687070 cites W2104489082 @default.
- W4308687070 cites W2112850441 @default.
- W4308687070 cites W2131686485 @default.
- W4308687070 cites W2136567909 @default.
- W4308687070 cites W2150702843 @default.
- W4308687070 cites W2169678694 @default.
- W4308687070 cites W2172216479 @default.
- W4308687070 cites W2244785476 @default.
- W4308687070 cites W2343967799 @default.
- W4308687070 cites W2477611692 @default.
- W4308687070 cites W2478294658 @default.
- W4308687070 cites W2497088276 @default.
- W4308687070 cites W2558124715 @default.
- W4308687070 cites W2573698009 @default.
- W4308687070 cites W2587466492 @default.
- W4308687070 cites W2592066197 @default.
- W4308687070 cites W2594183968 @default.
- W4308687070 cites W2604874722 @default.
- W4308687070 cites W2605920122 @default.
- W4308687070 cites W2619959352 @default.
- W4308687070 cites W2766196840 @default.
- W4308687070 cites W2790701750 @default.
- W4308687070 cites W2791355014 @default.
- W4308687070 cites W2801470986 @default.
- W4308687070 cites W2811321906 @default.
- W4308687070 cites W2884430236 @default.
- W4308687070 cites W2892250064 @default.
- W4308687070 cites W2892710297 @default.
- W4308687070 cites W2893471587 @default.
- W4308687070 cites W2900369799 @default.
- W4308687070 cites W2911964244 @default.
- W4308687070 cites W2951646322 @default.
- W4308687070 cites W2954533380 @default.
- W4308687070 cites W2964225153 @default.
- W4308687070 cites W2979402468 @default.
- W4308687070 cites W2980628255 @default.
- W4308687070 cites W2982668911 @default.
- W4308687070 cites W2994775606 @default.
- W4308687070 cites W3035559885 @default.
- W4308687070 cites W3085090411 @default.
- W4308687070 cites W3093846783 @default.
- W4308687070 cites W3097147261 @default.
- W4308687070 cites W3098269892 @default.
- W4308687070 cites W3103145119 @default.
- W4308687070 cites W4234557939 @default.
- W4308687070 cites W4376848491 @default.
- W4308687070 doi "https://doi.org/10.1039/d2ra05643g" @default.
- W4308687070 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36349007" @default.
- W4308687070 hasPublicationYear "2022" @default.
- W4308687070 type Work @default.
- W4308687070 citedByCount "1" @default.
- W4308687070 countsByYear W43086870702023 @default.
- W4308687070 crossrefType "journal-article" @default.
- W4308687070 hasAuthorship W4308687070A5008010362 @default.
- W4308687070 hasAuthorship W4308687070A5016414843 @default.
- W4308687070 hasAuthorship W4308687070A5033483386 @default.
- W4308687070 hasAuthorship W4308687070A5060995823 @default.
- W4308687070 hasAuthorship W4308687070A5063188141 @default.
- W4308687070 hasAuthorship W4308687070A5067320225 @default.
- W4308687070 hasBestOaLocation W43086870701 @default.
- W4308687070 hasConcept C103278499 @default.
- W4308687070 hasConcept C103697762 @default.
- W4308687070 hasConcept C104317684 @default.
- W4308687070 hasConcept C115961682 @default.
- W4308687070 hasConcept C147597530 @default.
- W4308687070 hasConcept C154945302 @default.
- W4308687070 hasConcept C178790620 @default.