Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308690708> ?p ?o ?g. }
- W4308690708 endingPage "16" @default.
- W4308690708 startingPage "1" @default.
- W4308690708 abstract "Features play an important role in representing classes in the hierarchy structure, and using unsuitable features will affect classification performance. The discrete wavelet transform (DWT) approach provides the ability to create the appropriate features to represent data. DWT can produce global and local features using different wavelet families and decomposition levels. These two parameters are essential to obtain a suitable representation for classes in the hierarchy structure. This study proposes using a particle swarm optimisation (PSO) algorithm to select the suitable wavelet family and decomposition level for G-protein coupled receptor (GPCR) hierarchical class representation. The results indicate that the PSO algorithm mostly selects Biorthogonal wavelets and decomposition level 2 to represent GPCR protein. Concerning the performance, the proposed method achieved an accuracy of 97.9%, 85.9%, and 77.5% at the family, subfamily, and sub-subfamily levels, respectively." @default.
- W4308690708 created "2022-11-14" @default.
- W4308690708 creator A5042883130 @default.
- W4308690708 creator A5061842277 @default.
- W4308690708 creator A5076013028 @default.
- W4308690708 date "2022-10-31" @default.
- W4308690708 modified "2023-09-30" @default.
- W4308690708 title "GPCR Protein Feature Representation using Discrete Wavelet Transform and Particle Swarm Optimisation Algorithm" @default.
- W4308690708 cites W1604595373 @default.
- W4308690708 cites W164248685 @default.
- W4308690708 cites W1737699519 @default.
- W4308690708 cites W1960467324 @default.
- W4308690708 cites W1996143035 @default.
- W4308690708 cites W2035522779 @default.
- W4308690708 cites W2038681300 @default.
- W4308690708 cites W2045645909 @default.
- W4308690708 cites W2053979203 @default.
- W4308690708 cites W2062931349 @default.
- W4308690708 cites W2065342853 @default.
- W4308690708 cites W2093577984 @default.
- W4308690708 cites W2107427637 @default.
- W4308690708 cites W2113077461 @default.
- W4308690708 cites W2121847038 @default.
- W4308690708 cites W2134914820 @default.
- W4308690708 cites W2139237500 @default.
- W4308690708 cites W2144750024 @default.
- W4308690708 cites W2156168829 @default.
- W4308690708 cites W2156875887 @default.
- W4308690708 cites W2230316394 @default.
- W4308690708 cites W2251001614 @default.
- W4308690708 cites W2510885050 @default.
- W4308690708 cites W2549656797 @default.
- W4308690708 cites W2559777429 @default.
- W4308690708 cites W2593745311 @default.
- W4308690708 cites W2620675477 @default.
- W4308690708 cites W2717783773 @default.
- W4308690708 cites W2734475733 @default.
- W4308690708 cites W2795471740 @default.
- W4308690708 cites W2795498805 @default.
- W4308690708 cites W2797485770 @default.
- W4308690708 cites W2807818025 @default.
- W4308690708 cites W2809551536 @default.
- W4308690708 cites W2904542630 @default.
- W4308690708 cites W2922298717 @default.
- W4308690708 cites W2923623692 @default.
- W4308690708 cites W2932348506 @default.
- W4308690708 cites W2938815817 @default.
- W4308690708 cites W2982622938 @default.
- W4308690708 cites W2992825418 @default.
- W4308690708 cites W2997207075 @default.
- W4308690708 cites W3088180695 @default.
- W4308690708 cites W3103158440 @default.
- W4308690708 cites W3135469953 @default.
- W4308690708 cites W3136291456 @default.
- W4308690708 cites W3159595726 @default.
- W4308690708 cites W4235948285 @default.
- W4308690708 doi "https://doi.org/10.5121/ijma.2022.14501" @default.
- W4308690708 hasPublicationYear "2022" @default.
- W4308690708 type Work @default.
- W4308690708 citedByCount "0" @default.
- W4308690708 crossrefType "journal-article" @default.
- W4308690708 hasAuthorship W4308690708A5042883130 @default.
- W4308690708 hasAuthorship W4308690708A5061842277 @default.
- W4308690708 hasAuthorship W4308690708A5076013028 @default.
- W4308690708 hasBestOaLocation W43086907081 @default.
- W4308690708 hasConcept C11413529 @default.
- W4308690708 hasConcept C153180895 @default.
- W4308690708 hasConcept C154945302 @default.
- W4308690708 hasConcept C158453530 @default.
- W4308690708 hasConcept C162324750 @default.
- W4308690708 hasConcept C17744445 @default.
- W4308690708 hasConcept C196216189 @default.
- W4308690708 hasConcept C199539241 @default.
- W4308690708 hasConcept C2776359362 @default.
- W4308690708 hasConcept C2778869661 @default.
- W4308690708 hasConcept C31170391 @default.
- W4308690708 hasConcept C33923547 @default.
- W4308690708 hasConcept C34447519 @default.
- W4308690708 hasConcept C41008148 @default.
- W4308690708 hasConcept C46286280 @default.
- W4308690708 hasConcept C47432892 @default.
- W4308690708 hasConcept C73339587 @default.
- W4308690708 hasConcept C85617194 @default.
- W4308690708 hasConcept C94625758 @default.
- W4308690708 hasConceptScore W4308690708C11413529 @default.
- W4308690708 hasConceptScore W4308690708C153180895 @default.
- W4308690708 hasConceptScore W4308690708C154945302 @default.
- W4308690708 hasConceptScore W4308690708C158453530 @default.
- W4308690708 hasConceptScore W4308690708C162324750 @default.
- W4308690708 hasConceptScore W4308690708C17744445 @default.
- W4308690708 hasConceptScore W4308690708C196216189 @default.
- W4308690708 hasConceptScore W4308690708C199539241 @default.
- W4308690708 hasConceptScore W4308690708C2776359362 @default.
- W4308690708 hasConceptScore W4308690708C2778869661 @default.
- W4308690708 hasConceptScore W4308690708C31170391 @default.
- W4308690708 hasConceptScore W4308690708C33923547 @default.
- W4308690708 hasConceptScore W4308690708C34447519 @default.
- W4308690708 hasConceptScore W4308690708C41008148 @default.