Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308690741> ?p ?o ?g. }
- W4308690741 endingPage "11428" @default.
- W4308690741 startingPage "11428" @default.
- W4308690741 abstract "Urban parameters, such as building density and the building coverage ratio (BCR), play a crucial role in urban analysis and measurement. Although several approaches have been proposed for BCR estimations, a quick and effective tool is still required due to the limitations of statistical-based and manual mapping methods. Since a building footprint is crucial for the BCR calculation, we hypothesize that Deep Learning (DL) models can aid in the BCR computation, due to their proven automatic building footprint extraction capability. Thus, this study applies the DL framework in the ArcGIS software to the BCR calculation task and evaluates its efficiency for a new industrial district in South Korea. Although the accuracy achieved was limited due to poor-quality input data and issues with the training process, the result indicated that the DL-based approach is applicable for BCR measuring, which is a step toward suggesting an implication of this method. Overall, the potential utility of this proposed approach for the BCR measurement promises to be considerable." @default.
- W4308690741 created "2022-11-14" @default.
- W4308690741 creator A5002849078 @default.
- W4308690741 creator A5006496346 @default.
- W4308690741 creator A5057012400 @default.
- W4308690741 creator A5062435756 @default.
- W4308690741 creator A5081457082 @default.
- W4308690741 date "2022-11-10" @default.
- W4308690741 modified "2023-10-05" @default.
- W4308690741 title "Deep Learning Based Urban Building Coverage Ratio Estimation Focusing on Rapid Urbanization Areas" @default.
- W4308690741 cites W1563996677 @default.
- W4308690741 cites W1969281976 @default.
- W4308690741 cites W1994820781 @default.
- W4308690741 cites W2004492980 @default.
- W4308690741 cites W2026083147 @default.
- W4308690741 cites W2048270193 @default.
- W4308690741 cites W2066416082 @default.
- W4308690741 cites W2079088843 @default.
- W4308690741 cites W2080025705 @default.
- W4308690741 cites W2106051475 @default.
- W4308690741 cites W2115478013 @default.
- W4308690741 cites W2159751172 @default.
- W4308690741 cites W2194775991 @default.
- W4308690741 cites W2567113173 @default.
- W4308690741 cites W2791061906 @default.
- W4308690741 cites W2793986883 @default.
- W4308690741 cites W2794427137 @default.
- W4308690741 cites W2801211594 @default.
- W4308690741 cites W2809043295 @default.
- W4308690741 cites W2870668160 @default.
- W4308690741 cites W2922102451 @default.
- W4308690741 cites W2948648905 @default.
- W4308690741 cites W2953250973 @default.
- W4308690741 cites W2963150697 @default.
- W4308690741 cites W2965833155 @default.
- W4308690741 cites W2991143986 @default.
- W4308690741 cites W2997900157 @default.
- W4308690741 cites W3011147769 @default.
- W4308690741 cites W3015756600 @default.
- W4308690741 cites W3044797659 @default.
- W4308690741 cites W3111269891 @default.
- W4308690741 cites W3132842068 @default.
- W4308690741 cites W3137744231 @default.
- W4308690741 cites W3155146252 @default.
- W4308690741 cites W3165258216 @default.
- W4308690741 cites W3177435843 @default.
- W4308690741 cites W3180799764 @default.
- W4308690741 cites W3184607044 @default.
- W4308690741 cites W3185689123 @default.
- W4308690741 cites W4220861019 @default.
- W4308690741 cites W4245646230 @default.
- W4308690741 cites W4249970585 @default.
- W4308690741 doi "https://doi.org/10.3390/app122211428" @default.
- W4308690741 hasPublicationYear "2022" @default.
- W4308690741 type Work @default.
- W4308690741 citedByCount "1" @default.
- W4308690741 countsByYear W43086907412023 @default.
- W4308690741 crossrefType "journal-article" @default.
- W4308690741 hasAuthorship W4308690741A5002849078 @default.
- W4308690741 hasAuthorship W4308690741A5006496346 @default.
- W4308690741 hasAuthorship W4308690741A5057012400 @default.
- W4308690741 hasAuthorship W4308690741A5062435756 @default.
- W4308690741 hasAuthorship W4308690741A5081457082 @default.
- W4308690741 hasBestOaLocation W43086907411 @default.
- W4308690741 hasConcept C104317684 @default.
- W4308690741 hasConcept C108583219 @default.
- W4308690741 hasConcept C111472728 @default.
- W4308690741 hasConcept C111919701 @default.
- W4308690741 hasConcept C119857082 @default.
- W4308690741 hasConcept C124101348 @default.
- W4308690741 hasConcept C127413603 @default.
- W4308690741 hasConcept C132943942 @default.
- W4308690741 hasConcept C138885662 @default.
- W4308690741 hasConcept C154945302 @default.
- W4308690741 hasConcept C166957645 @default.
- W4308690741 hasConcept C185592680 @default.
- W4308690741 hasConcept C200601418 @default.
- W4308690741 hasConcept C201995342 @default.
- W4308690741 hasConcept C205649164 @default.
- W4308690741 hasConcept C2779530757 @default.
- W4308690741 hasConcept C2780451532 @default.
- W4308690741 hasConcept C41008148 @default.
- W4308690741 hasConcept C43907098 @default.
- W4308690741 hasConcept C55493867 @default.
- W4308690741 hasConcept C96250715 @default.
- W4308690741 hasConcept C98045186 @default.
- W4308690741 hasConceptScore W4308690741C104317684 @default.
- W4308690741 hasConceptScore W4308690741C108583219 @default.
- W4308690741 hasConceptScore W4308690741C111472728 @default.
- W4308690741 hasConceptScore W4308690741C111919701 @default.
- W4308690741 hasConceptScore W4308690741C119857082 @default.
- W4308690741 hasConceptScore W4308690741C124101348 @default.
- W4308690741 hasConceptScore W4308690741C127413603 @default.
- W4308690741 hasConceptScore W4308690741C132943942 @default.
- W4308690741 hasConceptScore W4308690741C138885662 @default.
- W4308690741 hasConceptScore W4308690741C154945302 @default.
- W4308690741 hasConceptScore W4308690741C166957645 @default.
- W4308690741 hasConceptScore W4308690741C185592680 @default.