Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308694902> ?p ?o ?g. }
- W4308694902 endingPage "2824" @default.
- W4308694902 startingPage "2810" @default.
- W4308694902 abstract "ABSTRACT Nowadays, extensive data are collected in an automated regime. Combining this, with the increase in accessible computational power, led to large-scale implementations of machine learning (ML). This is also the case of meteor science, where object detection often requires tracking of a moving light source between frames, and the number of false positives can be up to an order of magnitude higher than true meteoric phenomena. While spatiotemporal coincidence of events recorded by close, multiple cameras can eliminate most of the false positives, single-station detections in some camera networks are currently discarded. In this paper, we explore a set of ML models aiming to find an optimal method for re-analysis of this single-station observations, in order to identify and extract real meteors. A set of 15 ML models were trained on features extracted from the meteor movement. Upon testing, we found a top accuracy score of 98,2 per cent, and a recall (i.e. percentage of meteors correctly classified) score of 96 per cent for the best performing models. When combined with the spatiotemporal coincidence of the detection, the recall increases to 99.92 per cent. These 15 ML techniques were selected according to their ability classify tabular data, hence the bundle can be applied to other studies. The same goes for the computed features, which are independent on the camera configuration, thus, the process can be scaled and applied to other networks. These methods are to be implemented to re-analyze the events recorded by the larger, FRIPON network." @default.
- W4308694902 created "2022-11-14" @default.
- W4308694902 creator A5011532052 @default.
- W4308694902 creator A5066840324 @default.
- W4308694902 creator A5073296640 @default.
- W4308694902 creator A5085041388 @default.
- W4308694902 date "2022-11-10" @default.
- W4308694902 modified "2023-09-26" @default.
- W4308694902 title "Single-station meteor detection filtering using machine learning on MOROI data" @default.
- W4308694902 cites W1498436455 @default.
- W4308694902 cites W1678356000 @default.
- W4308694902 cites W1972825009 @default.
- W4308694902 cites W1976193075 @default.
- W4308694902 cites W1988790447 @default.
- W4308694902 cites W1994654209 @default.
- W4308694902 cites W2047492331 @default.
- W4308694902 cites W2053222006 @default.
- W4308694902 cites W2055730451 @default.
- W4308694902 cites W2056132907 @default.
- W4308694902 cites W2078436544 @default.
- W4308694902 cites W2100495367 @default.
- W4308694902 cites W2112796928 @default.
- W4308694902 cites W2134599661 @default.
- W4308694902 cites W2176028050 @default.
- W4308694902 cites W2613432014 @default.
- W4308694902 cites W28412257 @default.
- W4308694902 cites W2910679941 @default.
- W4308694902 cites W2972071291 @default.
- W4308694902 cites W2975262086 @default.
- W4308694902 cites W3026693286 @default.
- W4308694902 cites W3103059822 @default.
- W4308694902 cites W3109411496 @default.
- W4308694902 cites W3110568778 @default.
- W4308694902 cites W3206736683 @default.
- W4308694902 cites W4206719291 @default.
- W4308694902 cites W4249572517 @default.
- W4308694902 cites W4283458170 @default.
- W4308694902 doi "https://doi.org/10.1093/mnras/stac3229" @default.
- W4308694902 hasPublicationYear "2022" @default.
- W4308694902 type Work @default.
- W4308694902 citedByCount "0" @default.
- W4308694902 crossrefType "journal-article" @default.
- W4308694902 hasAuthorship W4308694902A5011532052 @default.
- W4308694902 hasAuthorship W4308694902A5066840324 @default.
- W4308694902 hasAuthorship W4308694902A5073296640 @default.
- W4308694902 hasAuthorship W4308694902A5085041388 @default.
- W4308694902 hasConcept C10393806 @default.
- W4308694902 hasConcept C111919701 @default.
- W4308694902 hasConcept C121332964 @default.
- W4308694902 hasConcept C1276947 @default.
- W4308694902 hasConcept C142724271 @default.
- W4308694902 hasConcept C153180895 @default.
- W4308694902 hasConcept C154945302 @default.
- W4308694902 hasConcept C177264268 @default.
- W4308694902 hasConcept C199360897 @default.
- W4308694902 hasConcept C204787440 @default.
- W4308694902 hasConcept C2778105581 @default.
- W4308694902 hasConcept C2779832538 @default.
- W4308694902 hasConcept C31972630 @default.
- W4308694902 hasConcept C41008148 @default.
- W4308694902 hasConcept C58489278 @default.
- W4308694902 hasConcept C64869954 @default.
- W4308694902 hasConcept C71924100 @default.
- W4308694902 hasConcept C98045186 @default.
- W4308694902 hasConceptScore W4308694902C10393806 @default.
- W4308694902 hasConceptScore W4308694902C111919701 @default.
- W4308694902 hasConceptScore W4308694902C121332964 @default.
- W4308694902 hasConceptScore W4308694902C1276947 @default.
- W4308694902 hasConceptScore W4308694902C142724271 @default.
- W4308694902 hasConceptScore W4308694902C153180895 @default.
- W4308694902 hasConceptScore W4308694902C154945302 @default.
- W4308694902 hasConceptScore W4308694902C177264268 @default.
- W4308694902 hasConceptScore W4308694902C199360897 @default.
- W4308694902 hasConceptScore W4308694902C204787440 @default.
- W4308694902 hasConceptScore W4308694902C2778105581 @default.
- W4308694902 hasConceptScore W4308694902C2779832538 @default.
- W4308694902 hasConceptScore W4308694902C31972630 @default.
- W4308694902 hasConceptScore W4308694902C41008148 @default.
- W4308694902 hasConceptScore W4308694902C58489278 @default.
- W4308694902 hasConceptScore W4308694902C64869954 @default.
- W4308694902 hasConceptScore W4308694902C71924100 @default.
- W4308694902 hasConceptScore W4308694902C98045186 @default.
- W4308694902 hasFunder F4320308292 @default.
- W4308694902 hasIssue "2" @default.
- W4308694902 hasLocation W43086949021 @default.
- W4308694902 hasOpenAccess W4308694902 @default.
- W4308694902 hasPrimaryLocation W43086949021 @default.
- W4308694902 hasRelatedWork W2048373078 @default.
- W4308694902 hasRelatedWork W2141354157 @default.
- W4308694902 hasRelatedWork W2145177442 @default.
- W4308694902 hasRelatedWork W2205543665 @default.
- W4308694902 hasRelatedWork W2896235626 @default.
- W4308694902 hasRelatedWork W3012978760 @default.
- W4308694902 hasRelatedWork W3086857729 @default.
- W4308694902 hasRelatedWork W4294350201 @default.
- W4308694902 hasRelatedWork W4308694902 @default.
- W4308694902 hasRelatedWork W2971052914 @default.
- W4308694902 hasVolume "518" @default.