Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308695728> ?p ?o ?g. }
- W4308695728 endingPage "13838" @default.
- W4308695728 startingPage "13838" @default.
- W4308695728 abstract "Early detection of melanoma remains a daily challenge due to the increasing number of cases and the lack of dermatologists. Thus, AI-assisted diagnosis is considered as a possible solution for this issue. Despite the great advances brought by deep learning and especially convolutional neural networks (CNNs), computer-aided diagnosis (CAD) systems are still not used in clinical practice. This may be explained by the dermatologist’s fear of being misled by a false negative and the assimilation of CNNs to a “black box”, making their decision process difficult to understand by a non-expert. Decision theory, especially game theory, is a potential solution as it focuses on identifying the best decision option that maximizes the decision-maker’s expected utility. This study presents a new framework for automated melanoma diagnosis. Pursuing the goal of improving the performance of existing systems, our approach also attempts to bring more transparency in the decision process. The proposed framework includes a multi-class CNN and six binary CNNs assimilated to players. The players’ strategies is to first cluster the pigmented lesions (melanoma, nevus, and benign keratosis), using the introduced method of evaluating the confidence of the predictions, into confidence level (confident, medium, uncertain). Then, a subset of players has the strategy to refine the diagnosis for difficult lesions with medium and uncertain prediction. We used EfficientNetB5 as the backbone of our networks and evaluated our approach on the public ISIC dataset consisting of 8917 lesions: melanoma (1113), nevi (6705) and benign keratosis (1099). The proposed framework achieved an area under the receiver operating curve (AUROC) of 0.93 for melanoma, 0.96 for nevus and 0.97 for benign keratosis. Furthermore, our approach outperformed existing methods in this task, improving the balanced accuracy (BACC) of the best compared method from 77% to 86%. These results suggest that our framework provides an effective and explainable decision-making strategy. This approach could help dermatologists in their clinical practice for patients with atypical and difficult-to-diagnose pigmented lesions. We also believe that our system could serve as a didactic tool for less experienced dermatologists." @default.
- W4308695728 created "2022-11-14" @default.
- W4308695728 creator A5007950341 @default.
- W4308695728 creator A5022110060 @default.
- W4308695728 creator A5033131577 @default.
- W4308695728 creator A5040048209 @default.
- W4308695728 creator A5058559809 @default.
- W4308695728 creator A5060388464 @default.
- W4308695728 creator A5071656100 @default.
- W4308695728 date "2022-11-10" @default.
- W4308695728 modified "2023-09-30" @default.
- W4308695728 title "Computer Aided Diagnosis of Melanoma Using Deep Neural Networks and Game Theory: Application on Dermoscopic Images of Skin Lesions" @default.
- W4308695728 cites W1980621031 @default.
- W4308695728 cites W2100001370 @default.
- W4308695728 cites W2581082771 @default.
- W4308695728 cites W2612806369 @default.
- W4308695728 cites W2906116968 @default.
- W4308695728 cites W2910187721 @default.
- W4308695728 cites W2952971376 @default.
- W4308695728 cites W2963121404 @default.
- W4308695728 cites W2964054038 @default.
- W4308695728 cites W2964260482 @default.
- W4308695728 cites W2981731882 @default.
- W4308695728 cites W2997428643 @default.
- W4308695728 cites W3007992792 @default.
- W4308695728 cites W3010812223 @default.
- W4308695728 cites W3011885901 @default.
- W4308695728 cites W3012614932 @default.
- W4308695728 cites W3024889886 @default.
- W4308695728 cites W3036298167 @default.
- W4308695728 cites W3036319923 @default.
- W4308695728 cites W3080741050 @default.
- W4308695728 cites W3093045698 @default.
- W4308695728 cites W3097337942 @default.
- W4308695728 cites W3102785203 @default.
- W4308695728 cites W3106032784 @default.
- W4308695728 cites W3114587593 @default.
- W4308695728 cites W3119766921 @default.
- W4308695728 cites W3120507271 @default.
- W4308695728 cites W3128513997 @default.
- W4308695728 cites W3142537420 @default.
- W4308695728 cites W3150811281 @default.
- W4308695728 cites W3171214286 @default.
- W4308695728 cites W3196396697 @default.
- W4308695728 cites W3197469359 @default.
- W4308695728 cites W3198806597 @default.
- W4308695728 cites W3200313969 @default.
- W4308695728 cites W3212558710 @default.
- W4308695728 cites W4200120391 @default.
- W4308695728 cites W4200326299 @default.
- W4308695728 cites W4211215416 @default.
- W4308695728 cites W4291221943 @default.
- W4308695728 cites W4292263242 @default.
- W4308695728 cites W4304688666 @default.
- W4308695728 doi "https://doi.org/10.3390/ijms232213838" @default.
- W4308695728 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36430315" @default.
- W4308695728 hasPublicationYear "2022" @default.
- W4308695728 type Work @default.
- W4308695728 citedByCount "2" @default.
- W4308695728 countsByYear W43086957282023 @default.
- W4308695728 crossrefType "journal-article" @default.
- W4308695728 hasAuthorship W4308695728A5007950341 @default.
- W4308695728 hasAuthorship W4308695728A5022110060 @default.
- W4308695728 hasAuthorship W4308695728A5033131577 @default.
- W4308695728 hasAuthorship W4308695728A5040048209 @default.
- W4308695728 hasAuthorship W4308695728A5058559809 @default.
- W4308695728 hasAuthorship W4308695728A5060388464 @default.
- W4308695728 hasAuthorship W4308695728A5071656100 @default.
- W4308695728 hasBestOaLocation W43086957281 @default.
- W4308695728 hasConcept C108583219 @default.
- W4308695728 hasConcept C111919701 @default.
- W4308695728 hasConcept C119857082 @default.
- W4308695728 hasConcept C153180895 @default.
- W4308695728 hasConcept C154945302 @default.
- W4308695728 hasConcept C2777212361 @default.
- W4308695728 hasConcept C2777658100 @default.
- W4308695728 hasConcept C2779323059 @default.
- W4308695728 hasConcept C2780233690 @default.
- W4308695728 hasConcept C2984842247 @default.
- W4308695728 hasConcept C38652104 @default.
- W4308695728 hasConcept C41008148 @default.
- W4308695728 hasConcept C502942594 @default.
- W4308695728 hasConcept C71924100 @default.
- W4308695728 hasConcept C81363708 @default.
- W4308695728 hasConcept C98045186 @default.
- W4308695728 hasConceptScore W4308695728C108583219 @default.
- W4308695728 hasConceptScore W4308695728C111919701 @default.
- W4308695728 hasConceptScore W4308695728C119857082 @default.
- W4308695728 hasConceptScore W4308695728C153180895 @default.
- W4308695728 hasConceptScore W4308695728C154945302 @default.
- W4308695728 hasConceptScore W4308695728C2777212361 @default.
- W4308695728 hasConceptScore W4308695728C2777658100 @default.
- W4308695728 hasConceptScore W4308695728C2779323059 @default.
- W4308695728 hasConceptScore W4308695728C2780233690 @default.
- W4308695728 hasConceptScore W4308695728C2984842247 @default.
- W4308695728 hasConceptScore W4308695728C38652104 @default.
- W4308695728 hasConceptScore W4308695728C41008148 @default.
- W4308695728 hasConceptScore W4308695728C502942594 @default.