Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308695786> ?p ?o ?g. }
- W4308695786 endingPage "1633" @default.
- W4308695786 startingPage "1633" @default.
- W4308695786 abstract "Existing fusion rules focus on retaining detailed information in the source image, but as the thermal radiation information in infrared images is mainly characterized by pixel intensity, these fusion rules are likely to result in reduced saliency of the target in the fused image. To address this problem, we propose an infrared and visible image fusion model based on significant target enhancement, aiming to inject thermal targets from infrared images into visible images to enhance target saliency while retaining important details in visible images. First, the source image is decomposed with multi-level Gaussian curvature filtering to obtain background information with high spatial resolution. Second, the large-scale layers are fused using ResNet50 and maximizing weights based on the average operator to improve detail retention. Finally, the base layers are fused by incorporating a new salient target detection method. The subjective and objective experimental results on TNO and MSRS datasets demonstrate that our method achieves better results compared to other traditional and deep learning-based methods." @default.
- W4308695786 created "2022-11-14" @default.
- W4308695786 creator A5054513645 @default.
- W4308695786 creator A5055119733 @default.
- W4308695786 creator A5086830713 @default.
- W4308695786 date "2022-11-10" @default.
- W4308695786 modified "2023-09-25" @default.
- W4308695786 title "Infrared and Visible Image Fusion with Significant Target Enhancement" @default.
- W4308695786 cites W1964641132 @default.
- W4308695786 cites W1997596006 @default.
- W4308695786 cites W2009758395 @default.
- W4308695786 cites W2081195086 @default.
- W4308695786 cites W2084176623 @default.
- W4308695786 cites W2100470808 @default.
- W4308695786 cites W2116702374 @default.
- W4308695786 cites W2117853853 @default.
- W4308695786 cites W2125188192 @default.
- W4308695786 cites W2131168375 @default.
- W4308695786 cites W2148236753 @default.
- W4308695786 cites W2179019672 @default.
- W4308695786 cites W2266694576 @default.
- W4308695786 cites W2559870345 @default.
- W4308695786 cites W2589745805 @default.
- W4308695786 cites W2766065559 @default.
- W4308695786 cites W2798018774 @default.
- W4308695786 cites W2801108993 @default.
- W4308695786 cites W2809216229 @default.
- W4308695786 cites W2912147220 @default.
- W4308695786 cites W2936775474 @default.
- W4308695786 cites W2971071255 @default.
- W4308695786 cites W2974321789 @default.
- W4308695786 cites W3007891240 @default.
- W4308695786 cites W3011768656 @default.
- W4308695786 cites W3011781042 @default.
- W4308695786 cites W3105639468 @default.
- W4308695786 cites W3122334470 @default.
- W4308695786 cites W3126994406 @default.
- W4308695786 cites W3133700567 @default.
- W4308695786 cites W3152132512 @default.
- W4308695786 cites W3153311087 @default.
- W4308695786 cites W3210579459 @default.
- W4308695786 cites W4205276083 @default.
- W4308695786 cites W4206713196 @default.
- W4308695786 cites W4226178544 @default.
- W4308695786 cites W4283732315 @default.
- W4308695786 cites W4285600783 @default.
- W4308695786 cites W4294952245 @default.
- W4308695786 doi "https://doi.org/10.3390/e24111633" @default.
- W4308695786 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36359722" @default.
- W4308695786 hasPublicationYear "2022" @default.
- W4308695786 type Work @default.
- W4308695786 citedByCount "3" @default.
- W4308695786 countsByYear W43086957862022 @default.
- W4308695786 countsByYear W43086957862023 @default.
- W4308695786 crossrefType "journal-article" @default.
- W4308695786 hasAuthorship W4308695786A5054513645 @default.
- W4308695786 hasAuthorship W4308695786A5055119733 @default.
- W4308695786 hasAuthorship W4308695786A5086830713 @default.
- W4308695786 hasBestOaLocation W43086957861 @default.
- W4308695786 hasConcept C115961682 @default.
- W4308695786 hasConcept C120665830 @default.
- W4308695786 hasConcept C121332964 @default.
- W4308695786 hasConcept C138885662 @default.
- W4308695786 hasConcept C153180895 @default.
- W4308695786 hasConcept C154945302 @default.
- W4308695786 hasConcept C158355884 @default.
- W4308695786 hasConcept C158525013 @default.
- W4308695786 hasConcept C160633673 @default.
- W4308695786 hasConcept C163716315 @default.
- W4308695786 hasConcept C192209626 @default.
- W4308695786 hasConcept C195065555 @default.
- W4308695786 hasConcept C205372480 @default.
- W4308695786 hasConcept C2524010 @default.
- W4308695786 hasConcept C2778971668 @default.
- W4308695786 hasConcept C2780719617 @default.
- W4308695786 hasConcept C31972630 @default.
- W4308695786 hasConcept C33923547 @default.
- W4308695786 hasConcept C41008148 @default.
- W4308695786 hasConcept C41895202 @default.
- W4308695786 hasConcept C62520636 @default.
- W4308695786 hasConcept C69744172 @default.
- W4308695786 hasConceptScore W4308695786C115961682 @default.
- W4308695786 hasConceptScore W4308695786C120665830 @default.
- W4308695786 hasConceptScore W4308695786C121332964 @default.
- W4308695786 hasConceptScore W4308695786C138885662 @default.
- W4308695786 hasConceptScore W4308695786C153180895 @default.
- W4308695786 hasConceptScore W4308695786C154945302 @default.
- W4308695786 hasConceptScore W4308695786C158355884 @default.
- W4308695786 hasConceptScore W4308695786C158525013 @default.
- W4308695786 hasConceptScore W4308695786C160633673 @default.
- W4308695786 hasConceptScore W4308695786C163716315 @default.
- W4308695786 hasConceptScore W4308695786C192209626 @default.
- W4308695786 hasConceptScore W4308695786C195065555 @default.
- W4308695786 hasConceptScore W4308695786C205372480 @default.
- W4308695786 hasConceptScore W4308695786C2524010 @default.
- W4308695786 hasConceptScore W4308695786C2778971668 @default.
- W4308695786 hasConceptScore W4308695786C2780719617 @default.
- W4308695786 hasConceptScore W4308695786C31972630 @default.