Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308695923> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4308695923 endingPage "11" @default.
- W4308695923 startingPage "1" @default.
- W4308695923 abstract "We use 250 billion microcontrollers daily in electronic devices that are capable of running machine learning models inside them. Unfortunately, most of these microcontrollers are highly constrained in terms of computational resources, such as memory usage or clock speed. These are exactly the same resources that play a key role in teaching and running a machine learning model with a basic computer. However, in a microcontroller environment, constrained resources make a critical difference. Therefore, a new paradigm known as tiny machine learning had to be created to meet the constrained requirements of the embedded devices. In this review, we discuss the resource optimization challenges of tiny machine learning and different methods, such as quantization, pruning, and clustering, that can be used to overcome these resource difficulties. Furthermore, we summarize the present state of tiny machine learning frameworks, libraries, development environments, and tools. The benchmarking of tiny machine learning devices is another thing to be concerned about; these same constraints of the microcontrollers and diversity of hardware and software turn to benchmark challenges that must be resolved before it is possible to measure performance differences reliably between embedded devices. We also discuss emerging techniques and approaches to boost and expand the tiny machine learning process and improve data privacy and security. In the end, we form a conclusion about tiny machine learning and its future development." @default.
- W4308695923 created "2022-11-14" @default.
- W4308695923 creator A5045331292 @default.
- W4308695923 creator A5065426308 @default.
- W4308695923 date "2022-11-10" @default.
- W4308695923 modified "2023-09-30" @default.
- W4308695923 title "Tiny Machine Learning for Resource-Constrained Microcontrollers" @default.
- W4308695923 cites W2276892413 @default.
- W4308695923 cites W2805467605 @default.
- W4308695923 cites W2885657717 @default.
- W4308695923 cites W2966645774 @default.
- W4308695923 cites W3041971333 @default.
- W4308695923 cites W3043571714 @default.
- W4308695923 cites W3067862503 @default.
- W4308695923 cites W3093515987 @default.
- W4308695923 cites W3095048002 @default.
- W4308695923 cites W3103802018 @default.
- W4308695923 cites W3108166024 @default.
- W4308695923 cites W3134579744 @default.
- W4308695923 cites W3135376748 @default.
- W4308695923 cites W3186820812 @default.
- W4308695923 cites W3192834397 @default.
- W4308695923 cites W3199421948 @default.
- W4308695923 cites W3216221236 @default.
- W4308695923 cites W4214939762 @default.
- W4308695923 cites W4244330903 @default.
- W4308695923 cites W4280527816 @default.
- W4308695923 cites W4300594564 @default.
- W4308695923 cites W4300857176 @default.
- W4308695923 doi "https://doi.org/10.1155/2022/7437023" @default.
- W4308695923 hasPublicationYear "2022" @default.
- W4308695923 type Work @default.
- W4308695923 citedByCount "4" @default.
- W4308695923 countsByYear W43086959232023 @default.
- W4308695923 crossrefType "journal-article" @default.
- W4308695923 hasAuthorship W4308695923A5045331292 @default.
- W4308695923 hasAuthorship W4308695923A5065426308 @default.
- W4308695923 hasBestOaLocation W43086959231 @default.
- W4308695923 hasConcept C111919701 @default.
- W4308695923 hasConcept C119857082 @default.
- W4308695923 hasConcept C13280743 @default.
- W4308695923 hasConcept C144133560 @default.
- W4308695923 hasConcept C149635348 @default.
- W4308695923 hasConcept C154945302 @default.
- W4308695923 hasConcept C162853370 @default.
- W4308695923 hasConcept C173018170 @default.
- W4308695923 hasConcept C185798385 @default.
- W4308695923 hasConcept C205649164 @default.
- W4308695923 hasConcept C206345919 @default.
- W4308695923 hasConcept C31258907 @default.
- W4308695923 hasConcept C41008148 @default.
- W4308695923 hasConcept C86251818 @default.
- W4308695923 hasConcept C98045186 @default.
- W4308695923 hasConceptScore W4308695923C111919701 @default.
- W4308695923 hasConceptScore W4308695923C119857082 @default.
- W4308695923 hasConceptScore W4308695923C13280743 @default.
- W4308695923 hasConceptScore W4308695923C144133560 @default.
- W4308695923 hasConceptScore W4308695923C149635348 @default.
- W4308695923 hasConceptScore W4308695923C154945302 @default.
- W4308695923 hasConceptScore W4308695923C162853370 @default.
- W4308695923 hasConceptScore W4308695923C173018170 @default.
- W4308695923 hasConceptScore W4308695923C185798385 @default.
- W4308695923 hasConceptScore W4308695923C205649164 @default.
- W4308695923 hasConceptScore W4308695923C206345919 @default.
- W4308695923 hasConceptScore W4308695923C31258907 @default.
- W4308695923 hasConceptScore W4308695923C41008148 @default.
- W4308695923 hasConceptScore W4308695923C86251818 @default.
- W4308695923 hasConceptScore W4308695923C98045186 @default.
- W4308695923 hasFunder F4320335322 @default.
- W4308695923 hasLocation W43086959231 @default.
- W4308695923 hasOpenAccess W4308695923 @default.
- W4308695923 hasPrimaryLocation W43086959231 @default.
- W4308695923 hasRelatedWork W2485944590 @default.
- W4308695923 hasRelatedWork W2593649365 @default.
- W4308695923 hasRelatedWork W2950577464 @default.
- W4308695923 hasRelatedWork W3170111948 @default.
- W4308695923 hasRelatedWork W4200552550 @default.
- W4308695923 hasRelatedWork W4300037694 @default.
- W4308695923 hasRelatedWork W4302612983 @default.
- W4308695923 hasRelatedWork W4381245711 @default.
- W4308695923 hasRelatedWork W4385825481 @default.
- W4308695923 hasRelatedWork W4287077734 @default.
- W4308695923 hasVolume "2022" @default.
- W4308695923 isParatext "false" @default.
- W4308695923 isRetracted "false" @default.
- W4308695923 workType "article" @default.