Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308697930> ?p ?o ?g. }
- W4308697930 endingPage "045021" @default.
- W4308697930 startingPage "045021" @default.
- W4308697930 abstract "Abstract Echo-state networks are simple models of discrete dynamical systems driven by a time series. By selecting network parameters such that the dynamics of the network is contractive, characterized by a negative maximal Lyapunov exponent, the network may synchronize with the driving signal. Exploiting this synchronization, the echo-state network may be trained to autonomously reproduce the input dynamics, enabling time-series prediction. However, while synchronization is a necessary condition for prediction, it is not sufficient. Here, we study what other conditions are necessary for successful time-series prediction. We identify two key parameters for prediction performance, and conduct a parameter sweep to find regions where prediction is successful. These regions differ significantly depending on whether full or partial phase space information about the input is provided to the network during training. We explain how these regions emerge." @default.
- W4308697930 created "2022-11-14" @default.
- W4308697930 creator A5074141887 @default.
- W4308697930 creator A5082768390 @default.
- W4308697930 creator A5086574545 @default.
- W4308697930 date "2022-12-01" @default.
- W4308697930 modified "2023-10-10" @default.
- W4308697930 title "Constraints on parameter choices for successful time-series prediction with echo-state networks" @default.
- W4308697930 cites W122965473 @default.
- W4308697930 cites W1525627159 @default.
- W4308697930 cites W1856316989 @default.
- W4308697930 cites W2029967456 @default.
- W4308697930 cites W2036451492 @default.
- W4308697930 cites W2042619282 @default.
- W4308697930 cites W2066904644 @default.
- W4308697930 cites W2079329690 @default.
- W4308697930 cites W2145297462 @default.
- W4308697930 cites W2171865010 @default.
- W4308697930 cites W2487337615 @default.
- W4308697930 cites W2605288757 @default.
- W4308697930 cites W2745578724 @default.
- W4308697930 cites W2765128778 @default.
- W4308697930 cites W3025101483 @default.
- W4308697930 cites W3110752711 @default.
- W4308697930 cites W3126720815 @default.
- W4308697930 cites W3129474221 @default.
- W4308697930 cites W3152599691 @default.
- W4308697930 cites W4247794243 @default.
- W4308697930 cites W4299429830 @default.
- W4308697930 doi "https://doi.org/10.1088/2632-2153/aca1f6" @default.
- W4308697930 hasPublicationYear "2022" @default.
- W4308697930 type Work @default.
- W4308697930 citedByCount "0" @default.
- W4308697930 crossrefType "journal-article" @default.
- W4308697930 hasAuthorship W4308697930A5074141887 @default.
- W4308697930 hasAuthorship W4308697930A5082768390 @default.
- W4308697930 hasAuthorship W4308697930A5086574545 @default.
- W4308697930 hasBestOaLocation W43086979301 @default.
- W4308697930 hasConcept C105795698 @default.
- W4308697930 hasConcept C111472728 @default.
- W4308697930 hasConcept C11413529 @default.
- W4308697930 hasConcept C119857082 @default.
- W4308697930 hasConcept C127162648 @default.
- W4308697930 hasConcept C136764020 @default.
- W4308697930 hasConcept C138885662 @default.
- W4308697930 hasConcept C143724316 @default.
- W4308697930 hasConcept C147168706 @default.
- W4308697930 hasConcept C151406439 @default.
- W4308697930 hasConcept C151730666 @default.
- W4308697930 hasConcept C154945302 @default.
- W4308697930 hasConcept C172025690 @default.
- W4308697930 hasConcept C191544260 @default.
- W4308697930 hasConcept C199360897 @default.
- W4308697930 hasConcept C26517878 @default.
- W4308697930 hasConcept C2775924081 @default.
- W4308697930 hasConcept C2777052490 @default.
- W4308697930 hasConcept C2778562939 @default.
- W4308697930 hasConcept C2779426996 @default.
- W4308697930 hasConcept C2779843651 @default.
- W4308697930 hasConcept C2780586882 @default.
- W4308697930 hasConcept C31258907 @default.
- W4308697930 hasConcept C33923547 @default.
- W4308697930 hasConcept C34947359 @default.
- W4308697930 hasConcept C38652104 @default.
- W4308697930 hasConcept C41008148 @default.
- W4308697930 hasConcept C47446073 @default.
- W4308697930 hasConcept C48103436 @default.
- W4308697930 hasConcept C50644808 @default.
- W4308697930 hasConcept C72434380 @default.
- W4308697930 hasConcept C86803240 @default.
- W4308697930 hasConceptScore W4308697930C105795698 @default.
- W4308697930 hasConceptScore W4308697930C111472728 @default.
- W4308697930 hasConceptScore W4308697930C11413529 @default.
- W4308697930 hasConceptScore W4308697930C119857082 @default.
- W4308697930 hasConceptScore W4308697930C127162648 @default.
- W4308697930 hasConceptScore W4308697930C136764020 @default.
- W4308697930 hasConceptScore W4308697930C138885662 @default.
- W4308697930 hasConceptScore W4308697930C143724316 @default.
- W4308697930 hasConceptScore W4308697930C147168706 @default.
- W4308697930 hasConceptScore W4308697930C151406439 @default.
- W4308697930 hasConceptScore W4308697930C151730666 @default.
- W4308697930 hasConceptScore W4308697930C154945302 @default.
- W4308697930 hasConceptScore W4308697930C172025690 @default.
- W4308697930 hasConceptScore W4308697930C191544260 @default.
- W4308697930 hasConceptScore W4308697930C199360897 @default.
- W4308697930 hasConceptScore W4308697930C26517878 @default.
- W4308697930 hasConceptScore W4308697930C2775924081 @default.
- W4308697930 hasConceptScore W4308697930C2777052490 @default.
- W4308697930 hasConceptScore W4308697930C2778562939 @default.
- W4308697930 hasConceptScore W4308697930C2779426996 @default.
- W4308697930 hasConceptScore W4308697930C2779843651 @default.
- W4308697930 hasConceptScore W4308697930C2780586882 @default.
- W4308697930 hasConceptScore W4308697930C31258907 @default.
- W4308697930 hasConceptScore W4308697930C33923547 @default.
- W4308697930 hasConceptScore W4308697930C34947359 @default.
- W4308697930 hasConceptScore W4308697930C38652104 @default.
- W4308697930 hasConceptScore W4308697930C41008148 @default.
- W4308697930 hasConceptScore W4308697930C47446073 @default.