Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308731653> ?p ?o ?g. }
- W4308731653 endingPage "16" @default.
- W4308731653 startingPage "1" @default.
- W4308731653 abstract "Computing the robustness of a network, i.e., the capacity of a network holding its main functionality when a proportion of its nodes/edges are damaged, is useful in many real applications. The Monte Carlo numerical simulation is the commonly used method to compute network robustness. However, it has a very high computational cost, especially for large networks. Here, we propose a methodology such that the robustness of large real-world social networks can be predicted using machine learning models, which are pretrained using existing datasets. We demonstrate this approach by simulating two effective node attack strategies, i.e., the recalculated degree (RD) and initial betweenness (IB) node attack strategies, and predicting network robustness by using two machine learning models, multiple linear regression (MLR) and the random forest (RF) algorithm. We use the classic network robustness metric R as a model response and 8 network structural indicators (NSI) as predictor variables and trained over a large dataset of 48 real-world social networks, whose maximum number of nodes is 265,000. We found that the RF model can predict network robustness with a mean squared error (RMSE) of 0.03 and is 30% better than the MLR model. Among the results, we found that the RD strategy has more efficacy than IB for attacking real-world social networks. Furthermore, MLR indicates that the most important factors to predict network robustness are the scale-free exponent α and the average node degree <k>. On the contrary, the RF indicates that degree assortativity a, the global closeness, and the average node degree <k> are the most important factors. This study shows that machine learning models can be a promising way to infer social network robustness." @default.
- W4308731653 created "2022-11-15" @default.
- W4308731653 creator A5015787949 @default.
- W4308731653 creator A5031258100 @default.
- W4308731653 creator A5036664594 @default.
- W4308731653 creator A5049489715 @default.
- W4308731653 creator A5050116381 @default.
- W4308731653 creator A5053086929 @default.
- W4308731653 creator A5061857727 @default.
- W4308731653 creator A5072861318 @default.
- W4308731653 creator A5088692992 @default.
- W4308731653 date "2022-11-09" @default.
- W4308731653 modified "2023-10-14" @default.
- W4308731653 title "Predicting the Robustness of Large Real-World Social Networks Using a Machine Learning Model" @default.
- W4308731653 cites W1878853999 @default.
- W4308731653 cites W1931400479 @default.
- W4308731653 cites W1967385589 @default.
- W4308731653 cites W1967570846 @default.
- W4308731653 cites W1971937094 @default.
- W4308731653 cites W1981752077 @default.
- W4308731653 cites W1987950735 @default.
- W4308731653 cites W2019935267 @default.
- W4308731653 cites W2024982571 @default.
- W4308731653 cites W2025844353 @default.
- W4308731653 cites W2026286024 @default.
- W4308731653 cites W2030539428 @default.
- W4308731653 cites W2040956707 @default.
- W4308731653 cites W2050401089 @default.
- W4308731653 cites W2070207525 @default.
- W4308731653 cites W2090687169 @default.
- W4308731653 cites W2093333368 @default.
- W4308731653 cites W2102626870 @default.
- W4308731653 cites W2124637492 @default.
- W4308731653 cites W2129771223 @default.
- W4308731653 cites W2139743733 @default.
- W4308731653 cites W2148606196 @default.
- W4308731653 cites W2155261478 @default.
- W4308731653 cites W2171707538 @default.
- W4308731653 cites W2302255633 @default.
- W4308731653 cites W2487770199 @default.
- W4308731653 cites W2491238522 @default.
- W4308731653 cites W2588479680 @default.
- W4308731653 cites W2739963493 @default.
- W4308731653 cites W2765336044 @default.
- W4308731653 cites W2769133055 @default.
- W4308731653 cites W2798719097 @default.
- W4308731653 cites W2800933746 @default.
- W4308731653 cites W2883299405 @default.
- W4308731653 cites W2890157847 @default.
- W4308731653 cites W2911964244 @default.
- W4308731653 cites W2919115771 @default.
- W4308731653 cites W2950627632 @default.
- W4308731653 cites W2962847305 @default.
- W4308731653 cites W3010478935 @default.
- W4308731653 cites W3036698340 @default.
- W4308731653 cites W3044984877 @default.
- W4308731653 cites W3048720176 @default.
- W4308731653 cites W3098684887 @default.
- W4308731653 cites W3103071483 @default.
- W4308731653 cites W3108126162 @default.
- W4308731653 cites W3168999625 @default.
- W4308731653 cites W3207226598 @default.
- W4308731653 cites W3208083955 @default.
- W4308731653 cites W4236362309 @default.
- W4308731653 cites W950821216 @default.
- W4308731653 doi "https://doi.org/10.1155/2022/3616163" @default.
- W4308731653 hasPublicationYear "2022" @default.
- W4308731653 type Work @default.
- W4308731653 citedByCount "1" @default.
- W4308731653 countsByYear W43087316532023 @default.
- W4308731653 crossrefType "journal-article" @default.
- W4308731653 hasAuthorship W4308731653A5015787949 @default.
- W4308731653 hasAuthorship W4308731653A5031258100 @default.
- W4308731653 hasAuthorship W4308731653A5036664594 @default.
- W4308731653 hasAuthorship W4308731653A5049489715 @default.
- W4308731653 hasAuthorship W4308731653A5050116381 @default.
- W4308731653 hasAuthorship W4308731653A5053086929 @default.
- W4308731653 hasAuthorship W4308731653A5061857727 @default.
- W4308731653 hasAuthorship W4308731653A5072861318 @default.
- W4308731653 hasAuthorship W4308731653A5088692992 @default.
- W4308731653 hasBestOaLocation W43087316531 @default.
- W4308731653 hasConcept C104317684 @default.
- W4308731653 hasConcept C105795698 @default.
- W4308731653 hasConcept C117045392 @default.
- W4308731653 hasConcept C119857082 @default.
- W4308731653 hasConcept C124101348 @default.
- W4308731653 hasConcept C134306372 @default.
- W4308731653 hasConcept C139945424 @default.
- W4308731653 hasConcept C154945302 @default.
- W4308731653 hasConcept C185592680 @default.
- W4308731653 hasConcept C2779545769 @default.
- W4308731653 hasConcept C33923547 @default.
- W4308731653 hasConcept C41008148 @default.
- W4308731653 hasConcept C53811970 @default.
- W4308731653 hasConcept C55493867 @default.
- W4308731653 hasConcept C63479239 @default.
- W4308731653 hasConceptScore W4308731653C104317684 @default.
- W4308731653 hasConceptScore W4308731653C105795698 @default.