Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308731942> ?p ?o ?g. }
- W4308731942 endingPage "e071707" @default.
- W4308731942 startingPage "e071707" @default.
- W4308731942 abstract "To evaluate the benefit of combining polygenic risk scores with the QCancer-10 (colorectal cancer) prediction model for non-genetic risk to identify people at highest risk of colorectal cancer.Population based cohort study.Data from the UK Biobank study, collected between March 2006 and July 2010.434 587 individuals with complete data for genetics and QCancer-10 predictions were included in the QCancer-10 plus polygenic risk score modelling and validation cohorts.Prediction of colorectal cancer diagnosis by genetic, non-genetic, and combined risk models. Using data from UK Biobank, six different polygenic risk scores for colorectal cancer were developed using LDpred2 polygenic risk score software, clumping, and thresholding approaches, and a model based on genome-wide significant polymorphisms. The top performing genome-wide polygenic risk score and the score containing genome-wide significant polymorphisms were combined with QCancer-10 and performance was compared with QCancer-10 alone. Case-control (logistic regression) and time-to-event (Cox proportional hazards) analyses were used to evaluate risk model performance in men and women.Polygenic risk scores derived using the LDpred2 program performed best, with an odds ratio per standard deviation of 1.584 (95% confidence interval 1.536 to 1.633), and top age and sex adjusted C statistic of 0.733 (95% confidence interval 0.710 to 0.753) in logistic regression models in the validation cohort. Integrated QCancer-10 plus polygenic risk score models out-performed QCancer-10 alone. In men, the integrated LDpred2 model produced a C statistic of 0.730 (0.720 to 0.741) and explained variation of 28.2% (26.3 to 30.1), compared with 0.693 (0.682 to 0.704) and 21.0% (18.9 to 23.1) for QCancer-10 alone. In women, the C statistic for the integrated LDpred2 model was 0.687 (0.673 to 0.702) and explained variation was 21.0% (18.7 to 23.7), compared with 0.645 (0.631 to 0.659) and 12.4% (10.3 to 14.6) for QCancer-10 alone. In the top 20% of individuals at highest absolute risk, the sensitivity and specificity of the integrated LDpred2 models for predicting colorectal cancer diagnosis was 47.8% and 80.3% respectively in men, and 42.7% and 80.1% respectively in women, with increases in absolute risk in the top 5% of risk in men of 3.47-fold and in women of 2.77-fold compared with the median. Illustrative decision curve analysis indicated a small incremental improvement in net benefit with QCancer-10 plus polygenic risk score models compared with QCancer-10 alone.Integrating polygenic risk scores with QCancer-10 modestly improves risk prediction over use of QCancer-10 alone. Given that QCancer-10 data can be obtained relatively easily from health records, use of polygenic risk score in risk stratified population screening for colorectal cancer currently has no clear justification. The added benefit, cost effectiveness, and acceptability of polygenic risk scores should be carefully evaluated in a real life screening setting before implementation in the general population." @default.
- W4308731942 created "2022-11-15" @default.
- W4308731942 creator A5004448187 @default.
- W4308731942 creator A5023018025 @default.
- W4308731942 creator A5023124963 @default.
- W4308731942 creator A5037607675 @default.
- W4308731942 creator A5040598662 @default.
- W4308731942 creator A5051183004 @default.
- W4308731942 creator A5056372307 @default.
- W4308731942 creator A5090352318 @default.
- W4308731942 date "2022-11-09" @default.
- W4308731942 modified "2023-10-01" @default.
- W4308731942 title "Integrating genome-wide polygenic risk scores and non-genetic risk to predict colorectal cancer diagnosis using UK Biobank data: population based cohort study" @default.
- W4308731942 cites W1580339848 @default.
- W4308731942 cites W1581514961 @default.
- W4308731942 cites W1966489917 @default.
- W4308731942 cites W1971141173 @default.
- W4308731942 cites W1985299015 @default.
- W4308731942 cites W2045030989 @default.
- W4308731942 cites W2082704080 @default.
- W4308731942 cites W2085567353 @default.
- W4308731942 cites W2119910794 @default.
- W4308731942 cites W2122791877 @default.
- W4308731942 cites W2154814849 @default.
- W4308731942 cites W2161506768 @default.
- W4308731942 cites W2351656844 @default.
- W4308731942 cites W2359695191 @default.
- W4308731942 cites W2723723801 @default.
- W4308731942 cites W2787501820 @default.
- W4308731942 cites W2829068939 @default.
- W4308731942 cites W2890840903 @default.
- W4308731942 cites W2890929010 @default.
- W4308731942 cites W2895486342 @default.
- W4308731942 cites W2903533144 @default.
- W4308731942 cites W2932671560 @default.
- W4308731942 cites W2944046200 @default.
- W4308731942 cites W2970045605 @default.
- W4308731942 cites W2977301343 @default.
- W4308731942 cites W2990344725 @default.
- W4308731942 cites W2991034145 @default.
- W4308731942 cites W3007583505 @default.
- W4308731942 cites W3012413426 @default.
- W4308731942 cites W3020378214 @default.
- W4308731942 cites W3047586714 @default.
- W4308731942 cites W3088258981 @default.
- W4308731942 cites W3092114345 @default.
- W4308731942 cites W3106839128 @default.
- W4308731942 cites W3111018742 @default.
- W4308731942 cites W3134721632 @default.
- W4308731942 cites W3162706134 @default.
- W4308731942 cites W3175417087 @default.
- W4308731942 cites W4205906493 @default.
- W4308731942 doi "https://doi.org/10.1136/bmj-2022-071707" @default.
- W4308731942 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36351667" @default.
- W4308731942 hasPublicationYear "2022" @default.
- W4308731942 type Work @default.
- W4308731942 citedByCount "3" @default.
- W4308731942 countsByYear W43087319422023 @default.
- W4308731942 crossrefType "journal-article" @default.
- W4308731942 hasAuthorship W4308731942A5004448187 @default.
- W4308731942 hasAuthorship W4308731942A5023018025 @default.
- W4308731942 hasAuthorship W4308731942A5023124963 @default.
- W4308731942 hasAuthorship W4308731942A5037607675 @default.
- W4308731942 hasAuthorship W4308731942A5040598662 @default.
- W4308731942 hasAuthorship W4308731942A5051183004 @default.
- W4308731942 hasAuthorship W4308731942A5056372307 @default.
- W4308731942 hasAuthorship W4308731942A5090352318 @default.
- W4308731942 hasBestOaLocation W43087319421 @default.
- W4308731942 hasConcept C104317684 @default.
- W4308731942 hasConcept C105795698 @default.
- W4308731942 hasConcept C106208931 @default.
- W4308731942 hasConcept C116567970 @default.
- W4308731942 hasConcept C11783203 @default.
- W4308731942 hasConcept C121608353 @default.
- W4308731942 hasConcept C126322002 @default.
- W4308731942 hasConcept C135763542 @default.
- W4308731942 hasConcept C143998085 @default.
- W4308731942 hasConcept C144024400 @default.
- W4308731942 hasConcept C149923435 @default.
- W4308731942 hasConcept C151956035 @default.
- W4308731942 hasConcept C153209595 @default.
- W4308731942 hasConcept C156957248 @default.
- W4308731942 hasConcept C2779134260 @default.
- W4308731942 hasConcept C2908647359 @default.
- W4308731942 hasConcept C2992519594 @default.
- W4308731942 hasConcept C33923547 @default.
- W4308731942 hasConcept C44249647 @default.
- W4308731942 hasConcept C526805850 @default.
- W4308731942 hasConcept C54355233 @default.
- W4308731942 hasConcept C60644358 @default.
- W4308731942 hasConcept C71924100 @default.
- W4308731942 hasConcept C72563966 @default.
- W4308731942 hasConcept C86803240 @default.
- W4308731942 hasConcept C99454951 @default.
- W4308731942 hasConceptScore W4308731942C104317684 @default.
- W4308731942 hasConceptScore W4308731942C105795698 @default.
- W4308731942 hasConceptScore W4308731942C106208931 @default.
- W4308731942 hasConceptScore W4308731942C116567970 @default.