Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308732056> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4308732056 abstract "Electroencephalogram (EEG), a non-invasive method of brain signal acquisition, is an important part of the research of motor-imagery brain-computer interface (MI-BCI). However, the collected EEG dataset are often contaminated by various kinds of noise and artifacts. Furthermore, noisy labeled samples are often generated due to fatigue and distraction of subject in data acquisition. These low-quality samples will deteriorate the performance of MI - BCI. Therefore, the data cleaning technique is needed in EEG-based BCI research. In this paper, the feasibility and performance of confident learning (CL) for detecting low-quality samples in motor imagery EEG (MI-EEG) data was studied. We found that the CL method, while very effective in image data cleaning, is not suitable for EEG processing due to the impact of artifacts in MI-EEG data. So, we proposed to use the simplified infomax (slnfomax) independent component analysis (ICA) as the preprocessing step to improve the signal to noise ratio (SNR) of MI-EEG. The experimental results on benchmark MI-EEG datasets via convolutional neural network (CNN) demonstrated that, compared with CL only, the combination of sInfomax and CL can achieve more reliable results in low-quality MI-EEG data selection." @default.
- W4308732056 created "2022-11-15" @default.
- W4308732056 creator A5012237411 @default.
- W4308732056 creator A5020147975 @default.
- W4308732056 creator A5058510872 @default.
- W4308732056 date "2022-09-27" @default.
- W4308732056 modified "2023-10-14" @default.
- W4308732056 title "Low Quality Samples Detection in Motor Imagery EEG Data by Combining Independent Component Analysis and Confident Learning" @default.
- W4308732056 cites W1964324599 @default.
- W4308732056 cites W1971274817 @default.
- W4308732056 cites W2018120351 @default.
- W4308732056 cites W2099741732 @default.
- W4308732056 cites W2105909330 @default.
- W4308732056 cites W2128404967 @default.
- W4308732056 cites W2133999722 @default.
- W4308732056 cites W2135825876 @default.
- W4308732056 cites W2138964882 @default.
- W4308732056 cites W2158573165 @default.
- W4308732056 cites W2293981118 @default.
- W4308732056 cites W2897072966 @default.
- W4308732056 cites W2899714828 @default.
- W4308732056 cites W2952715783 @default.
- W4308732056 cites W2974734894 @default.
- W4308732056 cites W2980816529 @default.
- W4308732056 cites W3121810080 @default.
- W4308732056 cites W3126976720 @default.
- W4308732056 cites W3127807610 @default.
- W4308732056 cites W4242259102 @default.
- W4308732056 doi "https://doi.org/10.1109/iscit55906.2022.9931282" @default.
- W4308732056 hasPublicationYear "2022" @default.
- W4308732056 type Work @default.
- W4308732056 citedByCount "1" @default.
- W4308732056 crossrefType "proceedings-article" @default.
- W4308732056 hasAuthorship W4308732056A5012237411 @default.
- W4308732056 hasAuthorship W4308732056A5020147975 @default.
- W4308732056 hasAuthorship W4308732056A5058510872 @default.
- W4308732056 hasConcept C10551718 @default.
- W4308732056 hasConcept C115961682 @default.
- W4308732056 hasConcept C118552586 @default.
- W4308732056 hasConcept C153180895 @default.
- W4308732056 hasConcept C154945302 @default.
- W4308732056 hasConcept C15744967 @default.
- W4308732056 hasConcept C173201364 @default.
- W4308732056 hasConcept C28490314 @default.
- W4308732056 hasConcept C34736171 @default.
- W4308732056 hasConcept C41008148 @default.
- W4308732056 hasConcept C51432778 @default.
- W4308732056 hasConcept C522805319 @default.
- W4308732056 hasConcept C54808283 @default.
- W4308732056 hasConcept C81363708 @default.
- W4308732056 hasConcept C99498987 @default.
- W4308732056 hasConceptScore W4308732056C10551718 @default.
- W4308732056 hasConceptScore W4308732056C115961682 @default.
- W4308732056 hasConceptScore W4308732056C118552586 @default.
- W4308732056 hasConceptScore W4308732056C153180895 @default.
- W4308732056 hasConceptScore W4308732056C154945302 @default.
- W4308732056 hasConceptScore W4308732056C15744967 @default.
- W4308732056 hasConceptScore W4308732056C173201364 @default.
- W4308732056 hasConceptScore W4308732056C28490314 @default.
- W4308732056 hasConceptScore W4308732056C34736171 @default.
- W4308732056 hasConceptScore W4308732056C41008148 @default.
- W4308732056 hasConceptScore W4308732056C51432778 @default.
- W4308732056 hasConceptScore W4308732056C522805319 @default.
- W4308732056 hasConceptScore W4308732056C54808283 @default.
- W4308732056 hasConceptScore W4308732056C81363708 @default.
- W4308732056 hasConceptScore W4308732056C99498987 @default.
- W4308732056 hasLocation W43087320561 @default.
- W4308732056 hasOpenAccess W4308732056 @default.
- W4308732056 hasPrimaryLocation W43087320561 @default.
- W4308732056 hasRelatedWork W1601197851 @default.
- W4308732056 hasRelatedWork W2109858487 @default.
- W4308732056 hasRelatedWork W2146476394 @default.
- W4308732056 hasRelatedWork W2151753859 @default.
- W4308732056 hasRelatedWork W2154075423 @default.
- W4308732056 hasRelatedWork W2946091890 @default.
- W4308732056 hasRelatedWork W2969456792 @default.
- W4308732056 hasRelatedWork W2988125592 @default.
- W4308732056 hasRelatedWork W3024831895 @default.
- W4308732056 hasRelatedWork W4308732056 @default.
- W4308732056 isParatext "false" @default.
- W4308732056 isRetracted "false" @default.
- W4308732056 workType "article" @default.