Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308740089> ?p ?o ?g. }
- W4308740089 endingPage "103093" @default.
- W4308740089 startingPage "103093" @default.
- W4308740089 abstract "Cellular automata (CA) has proved to be effective and efficient in conducting urban expansion simulation. The generation of cell transition rules is a crucial step for a CA model. In this research, a whale optimization algorithm–based CA (WOA-CA) model was innovatively proposed. In the proposed model, a WOA was adapted to help mining the transition rules of the CA model, which was also evaluated and utilized in the case study of Guangzhou, simulating urban expansion from the year of 2000 to 2010. The experiment results demonstrated that the proposed model is effective and the simulation result is able to reach an overall accuracy of 92.16% with a Kappa coefficient of 0.744, and the value of Moran’s I is also quite close to that of the actual urban expansion. In addition, the proposed model has also been compared with a few representative CA models, including multi-criteria evaluation-based CA (MCE-CA), artificial neural network-based CA (ANN-CA), bat algorithm-based CA (BA-CA), convolution neural network for united mining-based CA (UMCNN-CA), and gray wolf optimizer-based CA (GWO-CA). The comparison results showd that our proposed model outperforms all these models in terms of overall accuracy and computational efficiency." @default.
- W4308740089 created "2022-11-15" @default.
- W4308740089 creator A5019560977 @default.
- W4308740089 creator A5033166190 @default.
- W4308740089 creator A5035940743 @default.
- W4308740089 creator A5062017144 @default.
- W4308740089 creator A5080862124 @default.
- W4308740089 creator A5091784428 @default.
- W4308740089 date "2022-12-01" @default.
- W4308740089 modified "2023-10-15" @default.
- W4308740089 title "A whale optimization algorithm–based cellular automata model for urban expansion simulation" @default.
- W4308740089 cites W1932847118 @default.
- W4308740089 cites W1965258109 @default.
- W4308740089 cites W1973836017 @default.
- W4308740089 cites W2000730663 @default.
- W4308740089 cites W2004056710 @default.
- W4308740089 cites W2007918464 @default.
- W4308740089 cites W2014916692 @default.
- W4308740089 cites W2029294727 @default.
- W4308740089 cites W2032568597 @default.
- W4308740089 cites W2033196598 @default.
- W4308740089 cites W2035320154 @default.
- W4308740089 cites W2067117278 @default.
- W4308740089 cites W2077444736 @default.
- W4308740089 cites W2082375144 @default.
- W4308740089 cites W2088365431 @default.
- W4308740089 cites W2099908874 @default.
- W4308740089 cites W2127059652 @default.
- W4308740089 cites W2132227723 @default.
- W4308740089 cites W2134377242 @default.
- W4308740089 cites W2135617432 @default.
- W4308740089 cites W2157364929 @default.
- W4308740089 cites W2169245194 @default.
- W4308740089 cites W2290883490 @default.
- W4308740089 cites W2314946955 @default.
- W4308740089 cites W2344756930 @default.
- W4308740089 cites W2519424133 @default.
- W4308740089 cites W2583431431 @default.
- W4308740089 cites W2763208873 @default.
- W4308740089 cites W2766699894 @default.
- W4308740089 cites W2768358664 @default.
- W4308740089 cites W2776803737 @default.
- W4308740089 cites W2789558410 @default.
- W4308740089 cites W2800504333 @default.
- W4308740089 cites W2805365628 @default.
- W4308740089 cites W2908402789 @default.
- W4308740089 cites W2919847359 @default.
- W4308740089 cites W2928888837 @default.
- W4308740089 cites W2969748696 @default.
- W4308740089 cites W2981819170 @default.
- W4308740089 cites W2987897613 @default.
- W4308740089 cites W2998021867 @default.
- W4308740089 cites W2998025886 @default.
- W4308740089 cites W3018946592 @default.
- W4308740089 cites W3022309749 @default.
- W4308740089 cites W3100105995 @default.
- W4308740089 cites W3206243909 @default.
- W4308740089 doi "https://doi.org/10.1016/j.jag.2022.103093" @default.
- W4308740089 hasPublicationYear "2022" @default.
- W4308740089 type Work @default.
- W4308740089 citedByCount "1" @default.
- W4308740089 countsByYear W43087400892023 @default.
- W4308740089 crossrefType "journal-article" @default.
- W4308740089 hasAuthorship W4308740089A5019560977 @default.
- W4308740089 hasAuthorship W4308740089A5033166190 @default.
- W4308740089 hasAuthorship W4308740089A5035940743 @default.
- W4308740089 hasAuthorship W4308740089A5062017144 @default.
- W4308740089 hasAuthorship W4308740089A5080862124 @default.
- W4308740089 hasAuthorship W4308740089A5091784428 @default.
- W4308740089 hasConcept C11413529 @default.
- W4308740089 hasConcept C126255220 @default.
- W4308740089 hasConcept C127413603 @default.
- W4308740089 hasConcept C147176958 @default.
- W4308740089 hasConcept C154945302 @default.
- W4308740089 hasConcept C186060115 @default.
- W4308740089 hasConcept C2984674859 @default.
- W4308740089 hasConcept C2987595161 @default.
- W4308740089 hasConcept C33923547 @default.
- W4308740089 hasConcept C35527583 @default.
- W4308740089 hasConcept C41008148 @default.
- W4308740089 hasConcept C49545453 @default.
- W4308740089 hasConcept C50644808 @default.
- W4308740089 hasConcept C86803240 @default.
- W4308740089 hasConceptScore W4308740089C11413529 @default.
- W4308740089 hasConceptScore W4308740089C126255220 @default.
- W4308740089 hasConceptScore W4308740089C127413603 @default.
- W4308740089 hasConceptScore W4308740089C147176958 @default.
- W4308740089 hasConceptScore W4308740089C154945302 @default.
- W4308740089 hasConceptScore W4308740089C186060115 @default.
- W4308740089 hasConceptScore W4308740089C2984674859 @default.
- W4308740089 hasConceptScore W4308740089C2987595161 @default.
- W4308740089 hasConceptScore W4308740089C33923547 @default.
- W4308740089 hasConceptScore W4308740089C35527583 @default.
- W4308740089 hasConceptScore W4308740089C41008148 @default.
- W4308740089 hasConceptScore W4308740089C49545453 @default.
- W4308740089 hasConceptScore W4308740089C50644808 @default.
- W4308740089 hasConceptScore W4308740089C86803240 @default.
- W4308740089 hasFunder F4320321001 @default.