Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308742766> ?p ?o ?g. }
- W4308742766 endingPage "126320" @default.
- W4308742766 startingPage "126320" @default.
- W4308742766 abstract "The zero-carbon emission can be achieved with utilization of hydrogen fuel in transportation sector but NOx emission rises. The experiments have been conducted at different operating conditions: engine speed (700 to 2000 RPM), load (25 to 75 %), MAPs = 65 to 178 kPa, spark timings (0 to 60°CA bTDC), EGR ratios, (0 to 0.33), hydrogen percentages 0 to 40 % in CNG fuel at stoichiometric operating condition to measure the in-cylinder pressure and NOx emission. The in-cylinder temperatures have been obtained through calibrated quasi-dimensional combustion model of HCNG engine. The in-cylinder pressure and temperature have been applied in simulation of NO mechanisms such as: thermal, prompt, and nitrous oxide mechanisms. Furthermore, the parametric properties of in-cylinder temperature, pressure, and nitric oxide mechanisms have been studied at different operating conditions. In second part, the traces of nitric oxide mechanisms have been transformed into positive real number with inclusion of six different sub-models that are: arithmetic mean, trapezoid integration, and author’ established three zone models (TD = 50, 100, 150 and 200 K). The three zone sub-model (TD = 100 K) has better prediction accuracy as compared to other sub-models, but it is still quite high. The prediction accuracy is improved with combination of different sub-models: 6C2, 6C3, 6C4, 6C5 and 6C6 iterations. The optimized MAPE is 24.9471 % corresponding to the four combinations of sub-models: arithmetic mean, trapezoid integration, three zone models (TD = 50 & 100 K). The best of each combination has been trained through machine learning classifier with total 6-algorithims that are Tree, Discriminant, Naïve Bayes, Support vector machine, KNN & Ensemble along with 24-functions to identify the range of different sub-models in a specific combination. The best prediction accuracy is corresponding to Ensemble with sub-space KNN classifier." @default.
- W4308742766 created "2022-11-15" @default.
- W4308742766 creator A5001030192 @default.
- W4308742766 creator A5048440061 @default.
- W4308742766 creator A5061333183 @default.
- W4308742766 date "2023-02-01" @default.
- W4308742766 modified "2023-09-26" @default.
- W4308742766 title "Numerical simulation of nitric oxide (NO) emission for HCNG fueled SI engine by Zeldovich’, prompt (HCN) and nitrous oxide (N2O) mechanisms along with the error reduction novel sub-models and their classification through machine learning algorithms" @default.
- W4308742766 cites W1584369851 @default.
- W4308742766 cites W1676021591 @default.
- W4308742766 cites W1955676608 @default.
- W4308742766 cites W1968333091 @default.
- W4308742766 cites W1968747202 @default.
- W4308742766 cites W1972496393 @default.
- W4308742766 cites W1983708108 @default.
- W4308742766 cites W1991035366 @default.
- W4308742766 cites W1998819452 @default.
- W4308742766 cites W2015987841 @default.
- W4308742766 cites W2019188247 @default.
- W4308742766 cites W2022571853 @default.
- W4308742766 cites W2024605808 @default.
- W4308742766 cites W2035003873 @default.
- W4308742766 cites W2040932489 @default.
- W4308742766 cites W2042167710 @default.
- W4308742766 cites W2044776110 @default.
- W4308742766 cites W2052143150 @default.
- W4308742766 cites W2056891134 @default.
- W4308742766 cites W2091990813 @default.
- W4308742766 cites W2092646390 @default.
- W4308742766 cites W2125283600 @default.
- W4308742766 cites W2165512128 @default.
- W4308742766 cites W2186294614 @default.
- W4308742766 cites W2246770510 @default.
- W4308742766 cites W2513386338 @default.
- W4308742766 cites W2550028752 @default.
- W4308742766 cites W2589785637 @default.
- W4308742766 cites W2620689220 @default.
- W4308742766 cites W2740664703 @default.
- W4308742766 cites W2744315481 @default.
- W4308742766 cites W2793927960 @default.
- W4308742766 cites W2807319534 @default.
- W4308742766 cites W2836549994 @default.
- W4308742766 cites W2892172841 @default.
- W4308742766 cites W2912909650 @default.
- W4308742766 cites W2952368891 @default.
- W4308742766 cites W2996700304 @default.
- W4308742766 cites W2999719861 @default.
- W4308742766 cites W3002843673 @default.
- W4308742766 cites W3092164301 @default.
- W4308742766 cites W3180692712 @default.
- W4308742766 cites W4213448345 @default.
- W4308742766 doi "https://doi.org/10.1016/j.fuel.2022.126320" @default.
- W4308742766 hasPublicationYear "2023" @default.
- W4308742766 type Work @default.
- W4308742766 citedByCount "4" @default.
- W4308742766 countsByYear W43087427662023 @default.
- W4308742766 crossrefType "journal-article" @default.
- W4308742766 hasAuthorship W4308742766A5001030192 @default.
- W4308742766 hasAuthorship W4308742766A5048440061 @default.
- W4308742766 hasAuthorship W4308742766A5061333183 @default.
- W4308742766 hasConcept C105923489 @default.
- W4308742766 hasConcept C113196181 @default.
- W4308742766 hasConcept C121332964 @default.
- W4308742766 hasConcept C127413603 @default.
- W4308742766 hasConcept C171146098 @default.
- W4308742766 hasConcept C178790620 @default.
- W4308742766 hasConcept C185592680 @default.
- W4308742766 hasConcept C192562407 @default.
- W4308742766 hasConcept C203032635 @default.
- W4308742766 hasConcept C2777573673 @default.
- W4308742766 hasConcept C43617362 @default.
- W4308742766 hasConcept C512968161 @default.
- W4308742766 hasConcept C57879066 @default.
- W4308742766 hasConceptScore W4308742766C105923489 @default.
- W4308742766 hasConceptScore W4308742766C113196181 @default.
- W4308742766 hasConceptScore W4308742766C121332964 @default.
- W4308742766 hasConceptScore W4308742766C127413603 @default.
- W4308742766 hasConceptScore W4308742766C171146098 @default.
- W4308742766 hasConceptScore W4308742766C178790620 @default.
- W4308742766 hasConceptScore W4308742766C185592680 @default.
- W4308742766 hasConceptScore W4308742766C192562407 @default.
- W4308742766 hasConceptScore W4308742766C203032635 @default.
- W4308742766 hasConceptScore W4308742766C2777573673 @default.
- W4308742766 hasConceptScore W4308742766C43617362 @default.
- W4308742766 hasConceptScore W4308742766C512968161 @default.
- W4308742766 hasConceptScore W4308742766C57879066 @default.
- W4308742766 hasLocation W43087427661 @default.
- W4308742766 hasOpenAccess W4308742766 @default.
- W4308742766 hasPrimaryLocation W43087427661 @default.
- W4308742766 hasRelatedWork W1162628517 @default.
- W4308742766 hasRelatedWork W1987391702 @default.
- W4308742766 hasRelatedWork W2017660127 @default.
- W4308742766 hasRelatedWork W2091305408 @default.
- W4308742766 hasRelatedWork W22138902 @default.
- W4308742766 hasRelatedWork W2354159397 @default.
- W4308742766 hasRelatedWork W2378248221 @default.
- W4308742766 hasRelatedWork W2899084033 @default.
- W4308742766 hasRelatedWork W2954449030 @default.